ARRO Case: Diffuse Intrinsic Pontine Glioma

Nicholas DeNunzio, MD, PhD (PGY-3)
Faculty Advisor: Louis S. Constine, MD, FASTRO
Department of Radiation Oncology
University of Rochester

Case Presentation

- 6 y/o F with no significant PMH
- Late 11/2016: patient noted to have a medially inverted right eye initially evaluated as a "lazy eye" by an optometrist
- Early 12/2016: development of progressive weakness of the left extremities, dysequilibrium, headache, and fatigue
- 12/23/16: Presentation to the ED with asymmetric pupils, nystagmus, right hemi-facial weakness, left hemiplegia, asymmetric clonus, and dysequilibrium

CT

Hyperdense mass 4 cm in size arising from the right pons and extending into the right CPA cistern, favoring a pontine glioma.

MRI

- A 4.3 cm mass arising from the right pons and extending into the CPA and cerebellopontine cistern with ill-defined margins.
- Radiographic characteristics included heterogeneous enhancement, restricted diffusion, partial effacement of the fourth ventricle and aquaduct with mild dilation of the third ventricle.

Differential Diagnosis by Imaging Findings

- Brainstem glioma
- Medulloblastoma
- Ependymoma
- Hamartoma
- Osmotic demyelination
- Langerhans cell histiocytosis

Pathology

- Stereotactic brain stem biopsy
 - Diffuse midline malignant glioma, H3K27M wildtype
 - WHO grade: III
 - Molecular markers:
 - IDH I wildtype
 - TP53 mutated
 - ATRX wildtype
 - H3K27M wild-type by IHC
 - BRAFv600E negative
 - Ki-67 labeling in the range of grade IV tumors

Complications

- Post-biopsy CT head showed increased prominence of the cerebral ventricles for which dexamethasone and acetazolamide were started.
- Seven days later, VP shunt placement was required to stabilize hydrocephalus.

Epidemiology

- In 2015, >3,000 new pediatric CNS tumors were diagnosed
 - Ten to 15 percent located in the brainstem
 - Of those in the brainstem, 80% are diffuse intrinsic pontine gliomas (DIPG)
- Peak ages of onset: 5-9 yr
- Median survival is about 12 months
- Most DIPGs (75%) are astrocytomas/highgrade
 - Both high- and low-grade histologies can be aggressive

Ostrom et al. *Neuro-Oncol* 2015; 17(suppl 4):iv1-iv62. Vanan et al. *Front Oncol* 2015; 5:237.

Clinical Presentation

- Rapid symptom onset
- Common findings include cranial nerve palsies (VI and VII most commonly) and ataxia >50%
- Long tract signs (hemiplegia, clonus, muscle spacticity, hyperreflexia)
- Hydrocephalus with elevated ICP <10%

(Favorable) Prognostic Factors

- Age < 3 yr at diagnosis
- Prolonged timespan between symptom onset and diagnosis
- Lack of pontine cranial nerve palsies
- Atypical radiologic characteristics
- NF-1

Work Up and Staging

- Work up includes H&P, labs, and MRI
 - Traditionally, biopsy has <u>not</u> been routinely indicated, but rather when the clinical course is atypical or when MRI findings are atypical (focal exophytic, strongly contrast enhancing, well circumscribed lesions)
 - Stereotactic brain biopsy has been increasingly pursued more recently
- Disease progression is predominantly local
- No formal disease staging exists

Typical Imaging Findings

CT

- Hypodense to isodense appearance
- Variable contrast enhancement
- Rarely calcified

MRI

- Expansile
- Hypointense on T1
- Hyperintense on T2

Treatment Paradigm

Steroids → ?Biopsy? → Radiation

Stereotactic Brainstem Biopsy

- First described by Roujeau 2007, in a prospective assessment of 24 children with diffuse pontine lesions using a suboccipital transcerebellar approach
- Postop complications occurred in two patients:
 - Two with transient new cranial nerve palsy
 - One with exacerbation of preop hemiparesis
- Diagnostic yield: 100%
 - Two patients found to have non-malignant lesions, which affected management
- Similar outcomes seen in the largest single-institution series by Puget et al. *Childs Nerv Syst* 2015; 31:1773-80.

Roujeau et al. J Neurosurg 2007; 107(1 Suppl):1-4.

External Beam Radiation

- Commonly: 54-59.4 Gy using standard fractionation
- Hyperfractionation (70.2 Gy delivered 1.17 Gy/fx BID) offers no benefit per prospective randomized evidence from POG 9239 (Mandell et al. IJROBP 1999; 43:959-64)

Hypofractionation

- Janssens et al. IJROBP 2013; 85:315-20
 - Matched cohort analysis of 54 patients comparing 54 Gy/30 fx to 39 Gy/13 fx (prospective) and 44.8 Gy/17 fx (retrospective)
 - Comparable tumor control, overall survival, treatment completion rates between groups
 - No grade 3 or 4 toxicities observed, although those receiving hypofractionation uniformly experienced moderate skin erythema and dry desquamation (minority with moist desquamation about auricular skin folds)
- Randomized data of 71 patients by Zaghloul (Radiother Oncol 2014) showed similar results between 54/30 and 39/13, though they did not fulfill the non-inferiority assumption

Simulation and Planning (this case)

- Simulation
 - Position: supine
 - Immobilization: head mask
 - Other notes:
 - No general anesthesia
- Volume delineation
 - -GTV
 - -CTV = GTV + 0.5 cm
 - -PTV = CTV + 0.5 cm

Dose Constraints (Standard Fractionation)

- Brainstem
 - Point max: ≤60 Gy
- Optic chiasm
 - Point max: ≤56 Gy
- Optic nerve
 - Point max: ≤55 Gy

- Retina
 - Point max: ≤50 Gy
- Lens
 - Point max: ≤7 Gy

Radiation Treatment Plan

- 54 Gy in 30 fractions
- Started with 2D therapy to expedite initiation of therapy
- Re-simmed after VP shunt placed 1/1/17, IMRT planning utilized

Dose Distribution

Dosimetry

	Max Dose [cGy]	Mean Dose [cGy]
Brain	5815.2	1639.8
BrainStem	5751.8	5592.6
Chiasm	5506.8	4940.3
Cochlea_L	4981.6	2721.5
Cochlea_R	5509.4	5240.5
Globe_L	1795.1	1047.3
Globe_R	1863.1	1201.8
LacrimalGland_L	1459.6	1121.7
LacrimalGland_R	1789.9	1573.0
Lens_L	626.6	500.0
Lens_R	595.6	488.7
OpticNerve_L	3090.9	2073.5
OpticNerve_R	3697.5	2336.5
PTV_54Gy_30fr	5865.2	5591.0
SpinalCord	5603.5	637.3

Systemic Therapy

- No meaningful survival benefit of chemotherapy has been demonstrated in a variety of settings:
 - Neoadjuvant
 - Concurrent
 - Adjuvant
 - Progression after radiation therapy
 - In combination with stem cell rescue
- Greater than 250 clinical trials have aimed to address this

Cohen et al. *Neuro-Oncol* 2017 (in press). Lapin et al. *Front Oncol* 2017; 7:57.

Novel Molecular Targets

- Most (80%) of DIPGs are associated with a gain-offunction mutation in histone H3 (H3K27M) leading to loss of histone tri-methylation resulting in epigenetic aberrations
- Two recent preclinical studies have identified therapeutic targets to treat H3K27M-mutated DIPG
 - EZH2: the catalytic subunit of polycomb recessive complex 2 (PRC2), a protein whose role (oncogenic vs tumorsuppressive) is unclear
 - Bromodomain proteins that bind to acetylated H3K27 residues and participate in gene regulation
- Several other mutations are being studied, including ACVR1, TP53, PDGFRA, PIK3CA, and Myc.

Lapin et al. Front Oncol 2017; 7:57. Ridler Nat Neurol 2017.

Re-irradiation?

- Given rapid time to progression (5-8 months from initial treatment), attempt is for palliation and possible small survival benefit
- Handful of small retrospective studies since 2012 that have examined this approach
 - Heterogeneous study populations across studies
 - Median overall survival after re-irradiation about six months
 - Seemingly well tolerated

Freese et al. Pract Rad Oncol 2017; 7: 86-92.

Epilogue

- Mental status and range of motion improved throughout the duration of her inpatient admission
- Completed radiation therapy without interruption, tolerated well
- MRI brain 3/2017 showed marked tumor growth with evidence of increased necrotic tissue
- Started adjuvant bevacizumab 3/20/17

Summary

- DIPG is a rare but aggressive pediatric neoplasm
- Stereotactic biopsy, while not standard, has been shown to be safe and effective in experienced hands and is likely to play a greater role in diagnosis and treatment
- Treatment centers around external beam radiation therapy with the goal of improving local control
 - Hypofractionation may be beneficial in shortening treatment time, but at the expense of normal tissue toxicity
 - Hyperfractionation has similar outcomes to standard fractionation, but requires BID general anesthesia
- Recent advances in tumor epigenetics have provided insight into disease mechanisms and identification of several putative molecular targets

