Spinal Cord Glioma

Timothy Malouff, MD Faculty: Jennifer Peterson, MD Mayo Clinic Florida Jacksonville, FL

- 22 year old female with no relevant PMH presented with a one month history of midback pain and a small area of numbness on her knee.
- ROS: Positive for gradually progressive bilateral lower extremity weakness and paresthesia.
 - No bladder or bowel dysfunction.
 - No saddle anesthesia

- SH: No previous surgeries
- FH: No family history of cancer or neurologic disorders.
- SH: Nonsmoker, no alcohol use, no drug use
- Medications: None
- Exam: 3/5 strength in the bilateral lower extremities, otherwise unremarkable

 Given her continued progressive symptoms despite conservative treatment with physical therapy, an MRI was obtained

- MR of the thoracic spine
 - T11-T12 centrally located intramedullary expanding lesion with well defined borders and mild heterogeneous enhancement
 - Radiographically consistent with ependymoma
- MR of the brain, cervical spine, and lumbar spine were negative

MRI

T2 imaging: Centrally located mass with well defined borders

Most consistent with ependymoma

February 19, 2020

Workup (NCCN v3.2019)

- Spine MRI (cervical, thoracic, and lumbar)
- CT myelogram if MRI is contraindicated

Treatment options (per NCCN)

- She underwent T11-T12 laminectomy and intramedullary spinal cord tumor resection
 - Postoperative course was uncomplicated
 - Per surgeon: 60% removed
- Pathology: Diffuse midline glioma (WHO grade IV)
 - H3K27-M mutant
 - ATRX retained, IDH-1 negative, high Ki67
 - MGMT not performed

ARRO

Postoperative MRI

- 1 month post-op
- Significant decrease in size of abnormality, although enhancement remains
- Suggesting subtotal resection

Adjuvant Treatment

- Multidisciplinary approach
- Clinical trials if available
- Temozolomide with radiation therapy (as per glioblastoma)
 - Pregnancy test!
 - Fertility counseling
 - Please see manuscript by Ghadjar et al for an excellent review on fertility preservation (<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341866/pdf/13</u> 014_2015_Article_353.pdf)

Adjuvant Radiation

- VMAT using 6MV photons
- 45 Gy in 25 fractions to low risk PTV followed by a 9 Gy boost to residual disease
- GTV: Gross tumor
 - CTV_45: GTV + 1.5 cm sup/inf expansion
 - PTV_45: CTV + 1 cm
- PTV_54: GTV +1 cm (CBCT used)
- Consider contouring ovaries (out of field in this patient)
- Minimize hot spot

<56 Gy February 19, 2020

Cord received a point dose of

February 19, 2020

February 19, 2020

ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

ARRO

Follow up

- She tolerated treatment well without significant toxicity
- She was started on Depakote by neurooncology given possible benefit in H3K27M gliomas (see Literature Review)
- She is continuing adjuvant temozolomide and tolerating well 1 month after radaition

SPINAL CORD GLIOMAS

February 19, 2020

Spinal Cord Gliomas

- Spinal cord malignancies account for 2-4% of all primary CNS cancers
 - High grade spinal cord gliomas account for 0.2% of all glioblastomas
- Typically treated similar to a GBM
 - Maximum total resection followed by adjuvant chemotherapy and radiation
 - Typically treated to 54 Gy (may treat to 60 Gy depending on disease site and institution)
 - Test for H3K27M when clinically indicated
 - Improved prognostic information, possible benefit with HDACinhibitors
- Local failures are most common
 - Most occur in-field within 2 years
- Most common cause of death: Sequelae from paraplegia (infection, etc)

Clinical Pearls

- Spinal cord ends at L1-2 in adults
 - L3-4 in children
- 2/3 of spinal cord tumors are extramedullary
 - 1/3 intramedullary
- 90% are low grade (ependymomas)
 - Most commonly in lumbar/sacral spine
 - Present as well defined regions of enhancement, typically more central and symmetric
- Astrocytomas are most common in cervical or thoracic spine
 - Present as asymmetric expansion on MRI

Toxicities

 Radiation induced myelopathy presents as paresthesia, weakness, pain/temperature loss, or bladder and bowel dysfunction

- 12-29 months after RT

- Risk of myelopathy (QUANTEC)
 - 54 Gy: <1%
 - 61 Gy: <10%
 - 13 Gy in 1 fraction (SRS): <1%</p>
 - Cervical spine is less sensitive than thoracic spine (consider dose escalating to 60 Gy)

LITERATURE REVIEW

February 19, 2020

doi:10.1016/j.ijrobp.2005.09.038

CLINICAL INVESTIGATION

Spinal Cord

SPINAL CORD GLIOMAS: A MULTI-INSTITUTIONAL RETROSPECTIVE ANALYSIS

May Abdel-Wahab, M.D.,* Blessing Etuk, M.D.,* James Palermo, M.D.,[†] Hiroki Shirato, M.D.,[‡] John Kresl, M.D., Ph.D.,[§] Ozlem Yapicier, M.D.,[∥] Gail Walker, Ph.D.,[¶] Bernd W. Scheithauer, M.D.,[#] Edward Shaw, M.D.,[†] Charles Lee, M.D.,^{**} Walter Curran, M.D.,^{††} Terry Thomas, M.Sc.,[§] and Arnold Markoe, M.D.*

*Department of Radiation Oncology, University of Miami, Miami FL; [†]Department of Radiation Oncology, Wake Forest University School of Medicine, Wake Forest, NC; [‡]Department of Radiation Oncology, Hokkaido University, Hokkaido, Japan; [§]Department of Radiation Oncology, Arizona Oncology Services at St Joseph's Hospital and Medical Center, and Cyberknife Center, Barrow Neurologic Institute, Phoenix, AZ; [‡]Department of Pathology, Anadolu Health Care System, Kocaeli, Turkey; [¶]University of Miami/Sylvester Comprehensive Cancer Center, Division of Biostatistics, Miami, FL; [#]Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; **Department of Radiation Oncology, Wayne State University, Detroit, MI; ^{††}Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA

- Retrospective review of 183 patients treated with surgery vs surgery and PORT for spinal cord gliomas
- Included low, intermediate, and high grade tumors

February 19, 2020

Abdel-Wahab et al

- For astrocytoma
 - PFS was 42% at 5 years, 29% at 10 years, and 15% at 15 years
 - OS was 59% at 5 years, 53% at 10 years, and 32% at 15 years
- Of note, RT group had few complete resections when compared to surgery alone

Fig. 2. Progression-free and overall survival in 57 astrocytoma patients by tumor grade and treatment.

 Conclusion: PORT reduced progression in low and moderate grade astrocytomas

Clinical Study

Vijay Yanamadala^{a,c,*}, Robert M. Koffie^{a,c}, Ganesh M. Shankar^{a,c}, Jay I. Kumar^{a,c}, Quinlan D. Buchlak^{a,c}, Vidya Puthenpura^a, Matthew P. Frosch^{b,c}, Thomas M. Gudewicz^{b,c}, Lawrence F. Borges^{a,c}, John H. Shin^{a,c}

^a Department of Neurosurgery, Massachusetts General Hospital, 15 Parkman Street, WACC 021, Boston, MA 02115, USA

^b Department of Pathology, Massachusetts General Hospital, Boston, MA, USA

^c Harvard Medical School, Boston, MA, USA

- Single institution analysis of 6 patients with high grade spinal cord gliomas
- All patients underwent subtotal resection
 - 3 received postoperative radiation (54 Gy in 30 fractions)
 - 3 received postoperative chemo (temozolomide) and bevacizumab)

February 19, 2020

Yanamadala et al

At 3 month follow-

up

- KPS was stable in
 50% of patients
- All patients had
 decreased KPS at 1
 year
- 100% overall survival at 1 year

Table 2

Outcomes for six patients with spinal cord glioblastoma

Patient outcomes	Metric
Follow-up mean [range], years	1.5 [1-3]
Neurological status (stable or improved ASIA score)	
Immediate post-operative	6
3 months	5
1 year	1
Functional status (stable or improved KPS)	
Immediate post-operative	5
3 months	3
1 year	0
Post-operative radiation	3
Post-operative chemotherapy	3
1 year survival	100% (6/6)

ASIA = American Spine Injury Association, KPS = Karnofsky Performance Status.

February 19, 2020

Conclusions from Yanamadala et al

There is an excellent 1 year survival, although with a decline in functional status, for patients with high grade spinal cord gliomas treated with subtotal resection +/- adjuvant chemoRT

Role of H3K27M?

- H3K27M: Substitution of lysine for methionine at position 27 in histone 3
 - Mutation in one of several H3 genes, including H3F3A or HIST1H3B/C
 - Almost always midline if present
 - Some evidence of improved outcomes with HDAC inhibitors (sodium valproate) in H3K27M tumors
 - Remains controversial
 - Largely based on pre-clinical studies and case reports
- Karremann et al published a study suggesting H3K27M as a poor prognostic factor for high grade gliomas in all regions of the CNS

Impact of the H3K27M mutation on survival in pediatric high-grade glioma: a systematic review and meta-analysis

Victor M. Lu, MD,¹ Mohammed A. Alvi, MBBS,^{2,3} Kerrie L. McDonald, PhD,¹ and David J. Daniels, MD, PhD²

¹Prince of Wales Clinical School, The University of New South Wales, Sydney, Australia; and ²Department of Neurologic Surgery and ³Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota

- Meta-analysis of 6 studies and 474 patients
- The presence of the mutation was associated with worse prognosis (HR 3.630) and a worse overall survival (by 2.3 years)

RESEARCH ARTICLE

Repurposing the anti-epileptic drug sodium valproate as an adjuvant treatment for diffuse intrinsic pontine glioma

Clare L. Killick-Cole¹*, William G. B. Singleton^{1,2}, Alison S. Bienemann¹, Daniel J. Asby¹, Marcella J. Wyatt¹, Lisa J. Boulter¹, Neil U. Barua^{1,2}, Steven S. Gill^{1,2}*

1 Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, United Kingdom, 2 Department of Neurosurgery, North Bristol NHS Trust, Bristol, United Kingdom

- Sodium valproate causes dose-dependent decrease in DIPG cell line viability
- Valproate causes increase in acetylation of histone H3, reducing cell viability by induction of apoptosis
- Potentiates carboplatin
- Conclusion: Based on pre-clinical work, valproate may be used as an adjuvant treatment in DIPG

February 19, 2020

Case report

Prolonged survival in a patient with a cervical spine H3K27M-mutant diffuse midline glioma

Kelsey Peters,¹ Drew Pratt,² Carl Koschmann ⁽⁶⁾,³ Denise Leung¹

- Case report of a 39 year old with cervical intramedullary H3K27M-mutated diffuse midline glioma
 - Underwent subtotal resection
 - Treated with 54 Gy and concurrent and adjuvant temozolomide
 - Started on valproic acid at time of disease progression (25 months after diagnosis)
 - Passed away at 31 months after diagnosis

Summary

- High grade spinal cord gliomas are rare
- H3K27M is a poor prognostic factor
- Treatment consists of biopsy/resection followed by radiation (54 Gy in 30 fx) and chemo (similar to GBM)
- Try to keep the spinal cord dose <54 Gy for <1% risk of myelopathy
- Most relapses occur in-field

References

1.Abdel-Wahab M, Etuk B, Palermo J, Shirato H, Kresl J, Yapicier O, et al. Spinal cord gliomas: A multiinstitutional retrospective analysis. *Int J Radiat Oncol Biol Phys* (2006) 64(4):1060-71. doi: 10.1016/j.ijrobp.2005.09.038. PubMed PMID: 16373081.

2.Karremann M, Gielen GH, Hoffmann M, Wiese M, Colditz N, Warmuth-Metz M, et al. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. *Neuro Oncol* (2018) 20(1):123-31. doi: 10.1093/neuonc/nox149. PubMed PMID: 29016894; PubMed Central PMCID: PMCPMC5761525.

3. Killick-Cole CL, Singleton WGB, Bienemann AS, Asby DJ, Wyatt MJ, Boulter LJ, et al. Repurposing the antiepileptic drug sodium valproate as an adjuvant treatment for diffuse intrinsic pontine glioma. *PLoS One* (2017) 12(5):e0176855. doi: 10.1371/journal.pone.0176855. PubMed PMID: 28542253; PubMed Central PMCID: PMCPMC5444593.

4.Lu VM, Alvi MA, McDonald KL, Daniels DJ. Impact of the H3K27M mutation on survival in pediatric high-grade glioma: a systematic review and meta-analysis. *J Neurosurg Pediatr* (2018) 23(3):308-16. doi: 10.3171/2018.9.PEDS18419. PubMed PMID: 30544362.

5. Peters K, Pratt D, Koschmann C, Leung D. Prolonged survival in a patient with a cervical spine H3K27Mmutant diffuse midline glioma. *BMJ Case Rep* (2019) 12(10). doi: 10.1136/bcr-2019-231424. PubMed PMID: 31628092.

6. Yanamadala V, Koffie RM, Shankar GM, Kumar JI, Buchlak QD, Puthenpura V, et al. Spinal cord glioblastoma: 25years of experience from a single institution. *J Clin Neurosci* (2016) 27:138-41. doi: 10.1016/j.jocn.2015.11.011. PubMed PMID: 26755453.

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com