# SABR: Central Lung Early Stage NSCLC

Tina W. Zhang MD (PGY-5) Faculty Advisor: David Palma MD, PhD Radiation Oncology, Department of Oncology London Health Sciences Centre (LHSC) London, Ontario, Canada

### **Case Presentation**

- 70 year old Male, presents with worsening cough and pink sputum x 4 weeks
- No weight loss, no fevers/chills, review of systems negative
- Chest X-Ray: left hilar mass, possible left lower lobe pneumonia
- Treated with Levofloxacin x 10 days → pink sputum resolved, but cough persisted

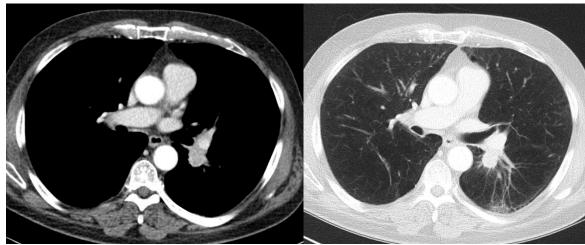
### **Case Presentation**

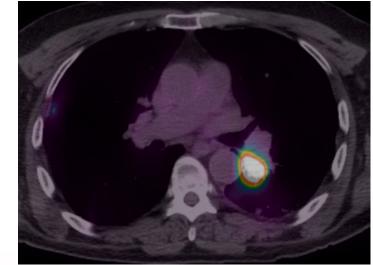
#### Past Medical History:

- COPD- previous exacerbation 4 years ago requiring ICU admission
- Previous NSTEMI
- Past smoker: 50 pack year history, quit x 4 years

#### **Physical Examination:**

- Appeared well, vital signs normal
- No H&N lymphadenopathy
- Chest auscultation- clear bilaterally, no adventitious sounds


# Workup


#### **CT Chest:**

- Left lower lobe spiculated mass, 3.3 cm in greatest dimension, abutting left lower lobe bronchus
- No hilar/mediastinal lymphadenopathy

#### **PET/CT Scan:**

- Left lower lobe perihilar hypermetabolic lesion, SUVmax 15.0
- No FDG avid lymphadenopathy
- No distant metastases





# Workup

Laboratory values: Normal

CT Head & MR Brain: Negative for metastases

#### **Pulmonary Function Tests:**

- FEV1/FVC Ratio = 42%
- FEV1= 45% predicted (1.19 L)
- DLCO = 44% predicted

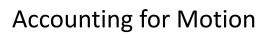
#### Echocardiogram:

 LV Ejection fraction = 58%, no wall motion abnormalities, normal diastolic function, normal RV function, no valvular dysfunction

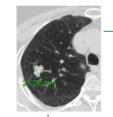
# **Tissue Diagnosis and Staging**

- Flexible Bronchoscopy:
  - tumor seen within left bronchial tree, partially occluding superior segment of the left lower lobe
- Transbronchial Biopsy:
  - Pathology: invasive squamous cell carcinoma
  - PDL-1 weak positive (41 49%)
- EBUS-FNA for mediastinal staging:
  - No visibly enlarged nodes
  - Stations 7 and 10 negative by FNA

## **Curative Intent Treatment Options**

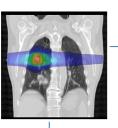

- Surgical Resection
  - Requires lobectomy or pneumonectomy
- Definitive Radiation Treatment
  - Stereotactic Ablative Radiation Therapy (SABR) or Stereotactic Body Radiation Therapy (SBRT)
    - Considered standard of care for medically inoperable early stage NSCLC
  - Conventionally Fractionated Radiation Therapy

# SABR


- Delivery of very high (ablative) radiation doses in a few fractions using highly conformal techniques
- Generally 1-5 fractions (ASTRO Evidence-Based Guidelines 2017)
- Alternatives include 6-10 fractions, used more frequently outside of the U.S.
- BED<sub>10</sub> ≥ 100 Gy<sub>10</sub> needed to maximize local control

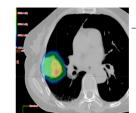
### SABR Features





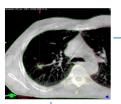

• 4D Planning




Small tumour volumes

• Small margins




Many Beam Directions

• 7-11 Beams / Arc Therapy



Steep dose gradients

• Inhomogeneous target dose



Accurate Targeting

• e.g. CBCT pre-RT



High dose per fraction

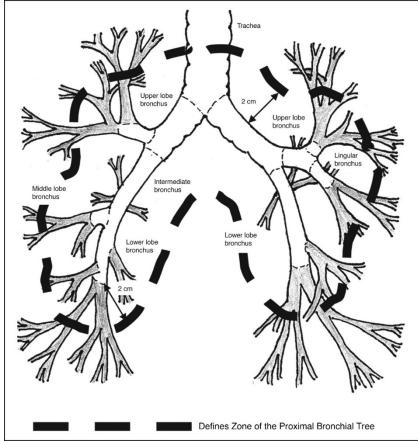
• Short total treatment duration

# SABR vs. Conventional RT: RCTs

#### SPACE (Nyman et al. 2016)

- Planned as Phase III, scaled down to Phase II
- Randomized N=102 to SABR (66 Gy in 3 Fr; 45 Gy at periphery of PTV) vs. conventional RT (70 Gy in 35 Fr)
- <u>Excluded central tumors</u>, or tumors > 6 cm
- OS & PFS: no difference between SBRT and conventional RT
- Potential better disease control rate in SBRT with better QoL and less toxicity

#### **CHISEL** (Ball *et al.* 2019)


- Phase III RCT
- Randomized N = 101 to SABR (54 Gy/3Fr or 48 Gy/4Fr) vs. conventional RT (66 Gy/33Fr or 50 Gy/20Fr)
- <u>Excluded central tumors</u>
- SABR: improved freedom from local failure (HR 0.32; 95% CI 0.13-0.77; p=0.008)
- 2 yr Local Control: SABR 89% vs. conventional 65%
- Median OS: SABR 5 years vs. conventional 3 years (HR 0.53; 95% CI 0.3- 0.94, p=0.03)

### **Central Lung Tumours**



# Background

- Early SABR studies showed increased toxicities when treating central tumors compared to peripheral tumors
- Indiana University (Timmerman *et al.* 2007)
  - Phase II Study of SABR 60 66 Gy in 3 Fr
  - Hilar/pericentral tumors have 11x increased risk of severe toxicity compared to peripheral tumors
  - Location strong predictor of grade 3-5 toxicity (p=0.004)
  - 2-yr freedom from severe toxicity 83% peripheral vs. 54% perihilar/central
  - 4 of 6 deaths from toxicity were in patients with perihilar/central tumors
- "No-Fly Zone"- within 2 cm of proximal bronchial tree



# Definitions

#### "Central":

- Most common definition/RTOG: Tumor within 2 cm radius in all directions from the proximal bronchial tree (PBT):
  - Distal 2 cm of Trachea, Carina
  - Right & left mainstem bronchi
  - Right: upper lobe, bronchus intermedius, middle lobe, lower lobe bronchus
  - Left: upper lobe, lingular bronchus, lower lobe bronchus
- Other definitions: within 2 cm of any mediastinal critical structure (bronchi, esophagus, heart & major vessels etc.)

#### "Ultracentral":

- More recent term, no consensus definition, varied by study
- PTV touches or overlaps central bronchial tree (PBT), esophagus, pulmonary artery or pulmonary vein (definition per SUNSET trial)
  - at risk of serious toxicities

# NRG Oncology/RTOG 0813 Trial

- Phase I/II study to determine maximum tolerated dose (MTD), efficacy, and toxicity of SABR for central NSCLC; N= 120 pts
- Central definition: tumors within or touching 2 cm zone around the PBT or immediately adjacent to mediastinal or pericardial pleura
- Tumors no larger than 5 cm
- Ultracentral tumors: 17% of patients
- Dose-escalating, 5 fraction SABR schedule of 10 to 12 Gy per fraction (i.e. starting at 50 Gy escalated to 60 Gy)
- MTD: 12 Gy per Fr (60 Gy in 5 fractions)
- Probability of Dose-limiting Toxicity (DLT) at the MTD = 7.2% (95% CI: 2.8-14.5%)
- Total of 5 patients experienced DLT's (death NOS, gr. 5 sinus bradycardia, gr. 3 hypoxia, gr. 3 pneumonitis, gr. 3 pleural effusion)
- **2-yr LC** in 11.5 Gy/Fr (57.5 Gy) cohort: 89.4% and in 12 Gy/Fr (60 Gy) cohort: 87.9%
- **2-yr OS** 67.9% and 72.7%, respectively

### Washington University Phase I/II Trial

- N= 74 patients enrolled to prospective study (23 to phase I, 51 to phase II)
- Tumors within or touching zone of PBT, within 5 mm or invading mediastinal pleura, within 5 mm or invading parietal pericardium
- Tumor 7 cm or less
- Phase II dose = 55 Gy / 5 Fr
- Acute toxicities: gr. 3 and 4 cardiac or pulmonary toxicities in 3 patients (6%)
- Late toxicities: gr. 3 cardiac or pulmonary in 11 pts (27%), gr. 4 in 5 pts (12%), 1 patient (4%) died of gr. 5 toxicity
- 2-yr LC: 85% (95% CI: 62-95%) using 55 Gy / 5 Fr
- 2-yr OS: 43% (95% CI: 28-57%)

# Ultracentral (UC) Tumors

- Raman (2018): 60 Gy in 8 Fr
  - UC= PTV contact/overlap PBT, esophagus, pulmonary vessels
  - No excessive risk of toxicity of UC vs. central
- Tekatli (2016): 60 Gy in 12 Fr; 4 fr per week over 3 weeks
  - UC= PTV overlapping trachea or main bronchi
  - 15% fatal pulmonary hemorrhage
  - Gr. 3 toxicity or higher: 38%
- Chaudhuri (2015): 50 Gy in 4 or 5 Fr
  - UC= GTV directly abut PBT or Trachea (excluded esophagus, mediastinum)
  - No significant toxicity difference between central vs. UC
- Hasbeek (2011): 60 Gy in 8 fr
  - Overlap with high-risk mediastinal structures (aorta, esophagus)
  - Acute gr. 3 toxicity 2%; late gr. 3 toxicity 6% (dyspnea, chest wall pain, fracture)
    Association of residents in radiation oncology

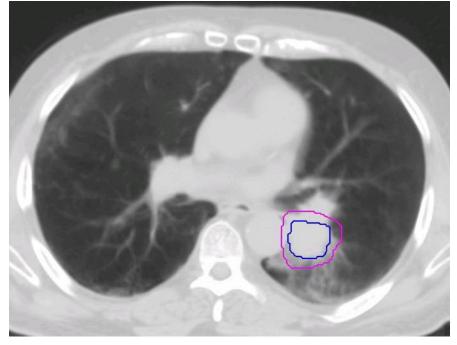
# **Current Trial: SUNSET**

- Multicenter phase I dose-finding study to determine MTD for ultracentral NSCLC
- Ultracentral definition: PTV touches or overlaps the central bronchial tree, esophagus, pulmonary vein, or pulmonary artery
- Starting Dose: 60 Gy in 8 fr; 7.5 Gy/fr (common in many Canadian centers)
- CT Simulation with contrast required
- Hot spot limited to 120%

# **Dose Options**

- Central:
  - 50-55 Gy in 5 Fr (common in the U.S.)
  - 60 Gy in 8 Fr (common in Canada / Europe)
  - 48 Gy in 4 Fr
  - 60 Gy in 5 Fr (MTD as per RTOG 0813)
- Ultracentral:
  - 60 Gy in 8 Fr
  - 50 Gy in 5 Fr
  - 60 Gy in 15 Fr (Hypofractionated)
  - Conventional RT
- Enroll in clinical trials

### Case: Our Patient's Treatment


- Offered sleeve lower lobectomy by thoracic surgeon as well as SABR
- Patient decided on SABR
- Enrolled onto SUNSET Clinical Trial
- Dose on trial: 60 Gy in 8 fractions

# **Radiation Planning**

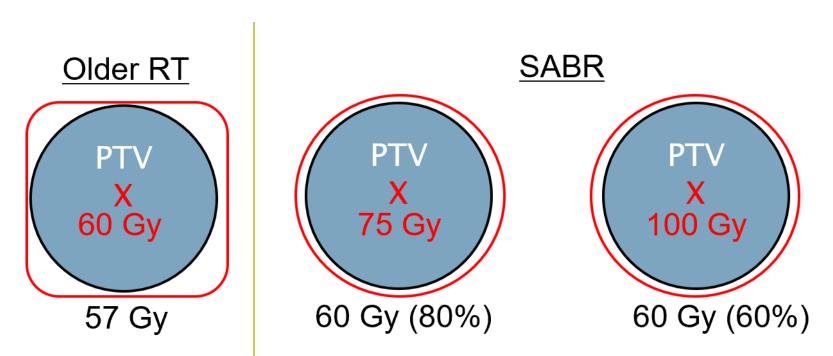
- Simulation:
  - 4D CT, IV contrast preferred
  - Position: Supine, arms above head
  - Immobilization: Vac Lok
- Physics:
  - Observe 4D-Cine "loop" playback of tumor motion from 4D CT
  - Ensures no hysteresis (tumor takes different path between inspiration and expiration)
    - If hysteresis, can use Maximum Intensity Projection (MIP) or delineate on all phases of breathing cycle
  - Our institution uses respiratory gating if tumor motion > 7 mm
  - Ungated: Rad Onc delineates tumor using the Average Intensity
    Projection (AIP), Phase 0 (full inspiration), Phase 50 (full expiration)
    - Alternative: delineate using the MIP or contour all phases of 4DCT

### **Treatment Volumes**

- GTV = gross tumor from CT and PET imaging
- CTV = GTV
- CTV\_0 = CTV on full inspiration
- CTV\_50 = CTV on full expiration
- CTV\_Avg = CTV on AIP
- ITV = CTV\_0 + CTV\_50 + CTV\_Avg
  Alternative use MIP instead of Avg
- Check ITV to ensure it covers all phases

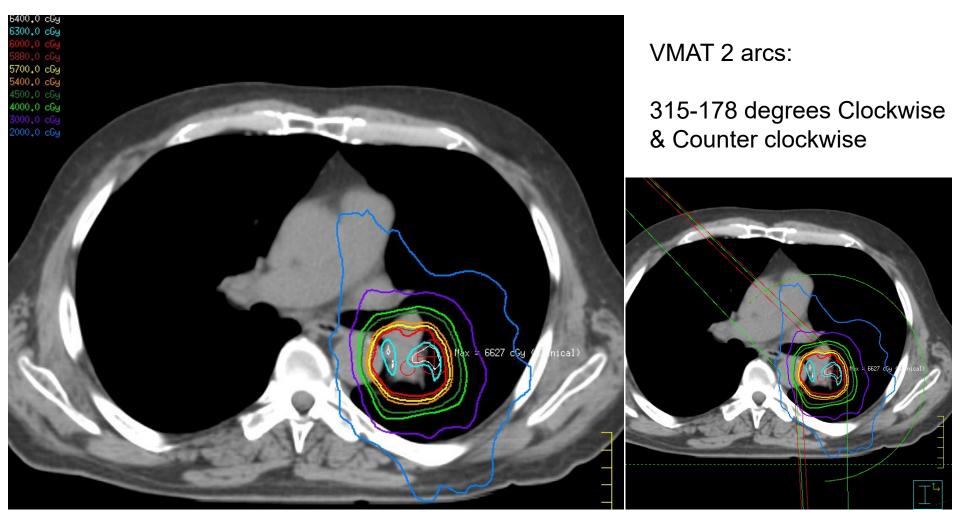



ITV in Blue PTV in Pink


PTV = ITV + 0.5 cm (since using ITV)

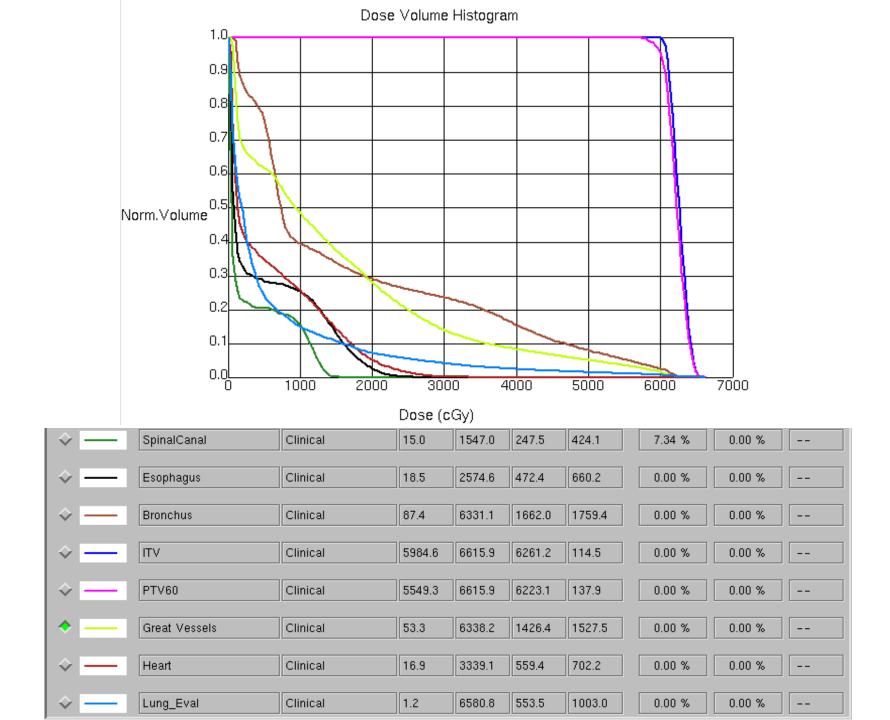
### **IV Contrast**

- IV Contrast was not used for this patient
- However, it can be helpful for central tumors for target delineation, especially if abutting vessels
- Images below show value of IV contrast for different patient




#### **SABR** Prescription




- SABR: dose prescribed to the periphery of PTV (e.g. 60-90% isodose line) such that a "hotspot" and dose heterogeneity will exist within the PTV
- To improve dose fall-off outside of target

### Patient Plan



ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

ARRO



#### **Critical Structure Dose Constraints SUNSET**

|                         |        | Fraction |         |         |
|-------------------------|--------|----------|---------|---------|
| Organ                   | Metric | 5/6      | 8/10    | 15      |
| Spinal canal            | Max    | 30 Gy    | 32 Gy   | 39.5 Gy |
| Spinal canal PRV (3 mm) | Max    | 32 Gy    | 34 Gy   | 42 Gy   |
| Esophagus               | Max    | 40 Gy    | 45 Gy   | 50.5 Gy |
|                         | 5 cc   | 35 Gy    | 40 Gy   | 48 Gy   |
| Brachial plexus         | Max    | 32 Gy    | 39 Gy   | 50 Gy   |
| Heart                   | Max    | 62 Gy    | 64 Gy   | 66 Gy   |
|                         | 10 cc  | 50 Gy    | 60 Gy   | 62 Gy   |
| Trachea                 | Max    | 62 Gy    | 64 Gy   | 66 Gy   |
|                         | 10 cc  | 50 Gy    | 60 Gy   | 62 Gy   |
| Proximal bronchus       | Max    | 62 Gy    | 64 Gy   | 66 Gy   |
|                         | 10 cc  | 50 Gy    | 60 Gy   | 62 Gy   |
| Non-GTV lung            | Mean   | < 12 Gy  | < 12 Gy | < 14 Gy |
| Aorta and major vessels | Max    | 62 Gy    | 64 Gy   | 64 Gy   |
|                         | 10 cc  | 50 Gy    | 60 Gy   | 60 Gy   |
| Stomach and intestines  | Max    | 40 Gy    | 45 Gy   | 50 Gy   |
|                         | 10 cc  | 35 Gy    | 40 Gy   | 48 Gy   |

Abbreviations: GTV = gross tumor volume; PRV = planning organ-at-risk volume.



# **SABR Plan Evaluation**

- Target Coverage:
  - 95% of PTV receives at least 100% of prescription
  - 99% of PTV receives 90% of prescription
- High Dose Spillage:
  - Cumulative volume of all tissue outside the PTV receiving a dose of >105% of prescription should be ≤ 15% of PTV volume
- Dose Fall-off outside of target:
  - R50 = Ratio of 50% prescription isodose volume to the PTV volume
  - D2cm = Maximum dose (% dose prescribed) at 2cm from PTV in any Direction
- Plan Conformity:
  - R100 = Ratio of prescription isodose volume to the PTV volume <1.2 1.5</li>
- Heterogeneity Index:
  - Ratio of the highest dose received by 5% of PTV to lowest dose received by 95% of PTV

### Follow-Up

- NCCN: History and physical + CT Chest every 3 months: first 3 years
- H&P + CT Chest every 6 months: years 4-5
- Then H&P + Low-dose CT Chest annually
- PET/CT or MR Brain not routinely indicated

### References

1. Videtic GMM, Donington J, Giuliani M, et al. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: Executive Summary of an ASTRO Evidence-Based Guideline. *Pract Radiat Oncol.* 2017;7(5):295-301.

2. Senan S, Palma DA, Lagerwaard FJ. Stereotactic ablative radiotherapy for stage I NSCLC: Recent advances and controversies. *J Thorac Dis.* 2011;3(3):189-196.

3. Nyman J, Hallqvist A, Lund JA, et al. SPACE - A randomized study of SBRT vs conventional fractionated radiotherapy in medically inoperable stage I NSCLC. *Radiother Oncol.* 2016;121(1):1-8.

4. Ball D, Mai GT, Vinod S, et al. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. *Lancet Oncol.* 2019;20(4):494-503.

5. Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. *J Clin Oncol.* 2006;24(30):4833-4839.

6. Fakiris AJ, McGarry RC, Yiannoutsos CT, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. *Int J Radiat Oncol Biol Phys.* 2009;75(3):677-682.

7. Bezjak A, Paulus R, Gaspar LE, et al. Safety and Efficacy of a Five-Fraction Stereotactic Body Radiotherapy Schedule for Centrally Located Non-Small-Cell Lung Cancer: NRG Oncology/RTOG 0813 Trial. *J Clin Oncol.* 2019:JCO1800622.

8. Roach MC, Robinson CG, DeWees TA, et al. Stereotactic Body Radiation Therapy for Central Early-Stage NSCLC: Results of a Prospective Phase I/II Trial. *J Thorac Oncol.* 2018;13(11):1727-1732.

9. Giuliani M, Mathew AS, Bahig H, et al. SUNSET: Stereotactic Radiation for Ultracentral Non-Small-Cell Lung Cancer-A Safety and Efficacy Trial. *Clin Lung Cancer*. 2018;19(4):e529-e532.

10. Raman S, Yau V, Pineda S, et al. Ultracentral Tumors Treated With Stereotactic Body Radiotherapy: Single-Institution Experience. *Clin Lung Cancer.* 2018;19(5):e803-e810.

11. Tekatli H, Haasbeek N, Dahele M, et al. Outcomes of Hypofractionated High-Dose Radiotherapy in Poor-Risk Patients with "Ultracentral" Non-Small Cell Lung Cancer. *J Thorac Oncol.* 2016;11(7):1081-1089.

12. Chaudhuri AA, Tang C, Binkley MS, et al. Stereotactic ablative radiotherapy (SABR) for treatment of central and ultracentral lung tumors. *Lung Cancer.* 2015;89(1):50-56.

13. Haasbeek CJ, Lagerwaard FJ, Slotman BJ, Senan S. Outcomes of stereotactic ablative radiotherapy for centrally located early-stage lung cancer. *J Thorac Oncol.* 2011;6(12):2036-2043.

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com