39-year-old Female With Right Gluteal Mass"

Malcolm Mattes, MD Ajay Tejwani, MD, MPH New York Methodist Hospital

Case Presentation

- 39-year-old female patient who felt a mass in the right gluteal area.
- Slowly growing over the course of 2 3 months.
- The mass is associated with pain that is dull in nature.
- No neurological complaints, no fevers, no skin changes, no weight loss.
- Patient admitted for further work-up.

H and P continued

- PMHx: None
- PSurgHx: s/p appendectomy 20 years ago, s/p Csection 10 years ago
- Medications: None
- All: NKDA
- SHx: No Tob, Occ Etoh, lives with husband and two kids
- FHx: negative for malignancy

Physical Exam

- KPS: 90
- Gen: NAD, patient lying in bed comfortably.
- No palpable cervical, axillary lymph nodes.
- Hard, mobile, roughly 6 x 6 cm nontender mass adjacent to the right intergluteal cleft. Overlying skin normal without evidence of erythema or ulceration.
- Neuro: Patient does not demonstrate any motor or sensory deficits.
- Remainder of exam normal.

CT

- Right side posterior gluteal 8.9 x 5.7 x 7.3cm
 heterogeneously enhancing mass with central low density.
- Remainder of the exam demonstrates no acute pathology.

MRI

• 13.0 x 4.5 x 8.0 cm heterogeneous, wellencapsulated mass in the right gluteus maximus.

Ax t1

Ax t1 fat supressed

Axial T2

Incisional Biopsy

- Considered technique of choice, though core needle biopsy is now more commonly done and has excellent sensitivity and specificity (FNA and excision Bx are not recommended).
- Must orient along long axis of extremity (planned future resection axis).
- Don't violate uninvolved compartment.
- Attempt minimal dissection with careful attention to hemostasis.

- High-grade myxofibrosarcoma
- Immunopathology
 - Positive: CD 117, 34, 68, **desmin**
 - Negative: AE1/AE3, EMA, HMB45, S100, Actin

• Malignant stromal tumor of fibroblastic origin with a spectrum of morphology that includes variable pleomorphism, myxoid appearance and typical vascular pattern.

Treatment Decision Point

- Radiation oncologist consulted prior to further therapy.
- Patient would benefit from adjuvant therapy given location and pathology.
- Possibility of brachytherapy to boost to higher dose.

Comparing Pre-op vs Post-op RT

PRE-OP RT

VS.

POST-OP RT

Advantages

- + irradiate smaller volume*
- + lower RT dose (less late fibrosis)
- + ↓ tumor seeding at surgery*
- + improves resectability
- + less tissue hypoxia before surgery

<u>Advantages</u>

- + no surgical delay
- + path staging / margin assessment (improves patient selection for RT)
- + no RT-related healing problems

Disadvantages

- delay in surgery
- ↑ wound complications (reversible)
- IHC pathology complications
- Boost in pts with (+) margins +/- effective

Disadvantages

- irradiate larger volume
- higher RT dose required
- more <u>fibrosis/edema</u> (irreversible)
- hypoxic environment after surgery

*Notes:

- Pre-op RT encompasses a smaller volume because you don't need to cover any operative field.
- Pre-op RT decreases tumor seeding during surgery because (1) the tumor may regress or (2) the pseudocapsule may thicken and become acellular, easing resection
- Post-op radiation therapy is preferred in <u>lower</u> extremity sarcomas due to increased risk of wound complications with pre-op radiation therapy in this group. For this reason an adjuvant approach was taken with our patient.

Wide Local Excision

- Right gluteal mass, 12.5 x 11 x 3.6 cm, Intramuscular
- High grade myxofibrosarcoma
- 20-40 mitotic figures per 10 HPF, Necrosis present,
 LVI negative
- Medial margin was positive on frozen section → fulguration and re-excision performed → no residual tumor seen on pathology
 - In cases of (+) or unknown margins, re-resection has been shown to improve local control even if patient receives post-op radiation therapy (MDACC, Zagars, 2003).

Interstitial Implant

- Following resection, 20 hollow afterloading catheters were placed 1 cm apart in a single plane in the longitudinal direction.
- All catheters were inserted inferiorly under the gluteal ridge to come superiorly closer to the iliac crest.
- The distance spanned ~12 cm.
- Catheters were secured with absorbable sutures inside the tumor bed and with plastic and metal buttons externally.
- The incision was then closed over the catheters.

HDR Brachtherapy

- Patient received a course of fractionated high-dose rate brachytherapy to the right gluteal region.
- Target volume: Tumor bed + 2cm longitudinal & 1.5cm perpendicular margin.
- Prescribed 1800 cGy at 1 cm depth giving 600 cGy for three fractions in three days.
- Treatment was started on post-op day six and was well-tolerated.
 - Pisters et al (1996) showed that RT increased rate of wound complications if Tx began ≤ 5 days post-op
- Catheters were removed.
- No side effects encountered and the patient was then referred for external radiation therapy in three weeks time.

External Beam Radiotherapy

- A course of external radiation therapy was given using IMRT to the right gluteal region.
- A dose of 5400 cGy was prescribed.
- Side effects: There was mild fibrosis of the right gluteal skin, but there was no significant wound healing problem.

General Notes on EBRT planning

- Target Volume:
 - Initial Field: Tumor bed, scar, drain sites + margins (5-7cm longitudinal, 2-3cm perpendicular).
 - Fuse planning CT with T1 MRI with contrast to delineate GTV, and include suspicious edema on T2 in CTV.
 - Margin can be shortened on anatomic boundaries such as bone, joints, unviolated fascia, and boundaries of compartment (with margin of 1-2cm)
 - Bolus scars & drain sites for first 50Gy unless in tangents (controversial)
 - Typically, don't do elective nodal irradiation (certain histologies excepted)
 - · If LNs resected, may consider nodal RT for ECE.
 - Boost Field: Reduce field to surgical bed + 2cm margin
- Positioning Pearls
 - Upper Inner Thigh best treated with frog-leg position
 - o Buttock/post thigh best treated in prone position
 - o Biceps best treated with shoulder 90 degrees abducted and internally rotated
 - o It is often necessary to assess multiple positions during simulation.
- Avoidance Structures:
 - Avoid treating the full circumference of an extremity (especially >50Gy)
 - Try to spare ½ of cross-section of weight-bearing bone, > ½ of joint cavities, and major tendons (patellar, Achilles)
 - Always spare 1.5-2cm strip of skin
 - Especially over anterior tibia due to poor vascularity & over commonly traumatized areas (elbow, knee, shin, femoral neck)
 - Avoid treating anus, urogenital tract, perineum, and genitalia
 - o Avoid treating lung (use shielding, etc)
 - Avoid dose maximums over surgical scars
 - o For the feet, try to spare 2/3 of weight bearing surfaces (heel, ball, lat edge)
- Dose Limitations:
 - >20Gy can prematurely close epiphysis
 - o >40Gy ablates bone marrow
 - >50Gy to bone cortex → fracture
 - o >40Gy to joint space → fibrotic constriction

Soft-tissue Sarcoma

A few interesting points...

Patterns of Spread

Lymph nodes

- ~5% have positive lymph nodes at presentation.
- Increased risk in clear cell sarcoma (28%), angiosarcoma (11%), epithelioid sarcoma (20%), rhabdomyosarcoma (15%), synovial sarcoma (2-14%).
 - (Mnemonic: SCARE for synovial, clear cell, angio, rhabdo, epithel.)

Distant metastases

- ~10% have distant mets at presentation.
- Extremity sarcomas most commonly spread to lung (70-82% experience lung mets as first metastatic site); ~80% of distant mets appear within two years.

AJCC 7th Edition (2009)

Primary Tumor: T1 - less than or equal to 5cm T1a - superficial T1b - deep T2 - greater than 5cm T2a - superficial

Regional Lymph Nodes: No - no

N1 - yes

Distant Metastases:

T₂b - deep

Mo - none M1 - yes Grade:

AJCC now recommends a three-tier system. The FNCLCC (French) system is the preferred grading system.

Stage Grouping:
IA - T1a/b No G1 - low grade (grade 1),
small
IB - T2a/b No G1 - low grade (grade 1),
large
IIA - T1a/b No G2-3 - mod/high grade
(grade 2-3), small
IIB - T2a/b No G2 - mod grade (grade 2),
large
III - T2a/b G3, or N1 - high grade (grade 3),
large; or node positive
IV - M1 - metastatic

Prognostic Factors

- Predictors of local recurrence NOT the same as those for distant recurrence
- Grade is most important prognostic factor, followed by margin status
- Increased Risk of <u>Local Recurrence</u> (in order of importance)
 - 1) Positive margins
 - 2) Tumor site: Difficult to clear margins in Retroperitoneal and H&N sarcomas
 - 3) Prior local recurrence
 - 4) Age >50
 - 5) Histology: fibrosarcoma, desmoid, MPNST
 - 6) Not significant: Grade, tumor size, and depth
- Increased Risk of <u>Distant Metastasis</u> (in order of importance)
 - 1) Grade: 50% risk for high grade, 10% for low grade
 - 2) Size

Size	# pts	%DM @ 5yrs
<2.5cm	58	3
2.5-5cm	128	22
5-10cm	177	34
10-15cm	68	43
15-20cm	49	58
>20cm	21	57

- 3) Deep lesion
- 4) High Ki-67
- 5) Histology: leiomyosarcoma & MPNST unfavorable, liposarcoma favorable
- Increased Risk of <u>Nodal Recurrence</u>
 - Depends on histologic subtype (SCARE pneumonic)

General Management

MANAGEMENT OF <u>EXTREMITY/TRUNK</u> SOFT TISSUE SARCOMAS

****Overview of Practice G	auidelines****
----------------------------	----------------

Stage I Surgery Alone (as long as final margins > 1 cm or intact fascial plane)

PORT for close (≤ 1 cm) or (+) margins (after optimal reexccision)

Stage II-III Surgery + RT (pre-op or post-op)

Chemo (pre-op or post-op) for large, deep, high-grade tumors

Stage IV For controlled 10 with ≤ 4 lung lesions and/or extended disease-free interval, consider surgical resection of all lesions. Otherwise, best supportive care.

Post-op RT Treatment Options

- o Indications: high grade, > 5cm tumor, or close/(+) margins
- o Timing: 10-20 days after surgery, or when healing is complete
- o Brachytherapy:
 - o (-) margin: 45Gy LDR/4-6d (or HDR 36Gy/10 BID fractions)
 - o (+) margin: 16-20Gy LDR/2-3d (or HDR equiv) → 50Gy EBRT
 - Note: Data for HDR is limited for sarcomas, but fractions of 3-4Gy preferred)
- o IORT:
 - 10-16Gy IORT → 50Gy EBRT
- EBRT: 4-6MV for extremities
 - o (-) margin: 50Gy EBRT \rightarrow 10-16Gy boost
 - o R1 resection: 50Gy EBRT → 16-20Gy boost
 - o R2 resection: 50Gy EBRT → 20-26Gy boost
- Target Volume:
 - Initial Field: Tumor bed, scar, drain sites + margins (5-7cm longitudinal, 2-3cm perpendicular).
 - Fuse planning CT with T1 MRI with contrast to delineate GTV, and include suspicious edema on T2 in CTV.
 - Margin can be shortened on anatomic boundaries such as bone, joints, unviolated fascia, and boundaries of compartment (with margin of 1-2cm)
 - Bolus scars & drain sites for first 50Gy unless in tangents (controversial)
 - Typically, don't do elective nodal irradiation (certain histologies excepted)
 - If LNs resected, may consider nodal RT for ECE.
 - Boost Field: Reduce field to surgical bed + 2cm margin

Brachytherapy

- Indications: definitive post-op Tx, boost dose combined with EBRT, definitive salvage treatment after prior EBRT (LC ~50%)
- o Types:
 - o LDR 40-200cGy/hour
 - HDR >1200cGy/hour (scarce data)

Advantages

- + smaller target volumes (??)
- + decreased wound complications
- + no delay of chemo

<u>Disadvantages</u>

- technically demanding
- <u>less</u> effective in **low-grade** tumors (#3)
- Target volume: Tumor Bed + margin (2cm longitudinal, 1.5cm perpendicular)
- Technique of afterloading-catheter placement:
 - Implanted percutaneously (1cm apart) in a single plane in the longitudinal direction along the planes of the muscle at the time of surgery
 - Catheters should extend 1-2cm beyond the lateral edge of the CTV and 2-5cm longitudinally beyond the CTV
 - Secured with absorbable sutures inside the tumor bed and with non-absorbable sutures and buttons externally
 - Catheters loaded > day 5

References/Studies of Interest

- NCI (Rosenberg et al, 1982)
- NCI (Yang et al, 1998)
- MSKCC (Pisters et al, 1996)
- NCIC (O'Sullivan et al. 2002, Davis et al. 2005)
- MSKCC (Alektiar et al, JCO, 2008)