Heterogeneity and Variation in Resistance Mechanisms among 221 EGFR-mutant NSCLC Patients With ≥ 1 Post-resistance Biopsy

Z. Piotrowska1, K. Stirling1, R. Heist1, M. Campo1, C. Rizzo1, S. R. Digumarthy2, M. Lanuti2, F. J. Fintelmann2, I. Lennes1, A. Farago1, J. Gainor1, C. G. Azzoli1, J. Temel1, M. Mino-Kenudson2, D. Dias-Santagata2, R. Corcoran1, A. Shaw1, J. A. Engelman3, A. Hata1, and L. V. Sequist1

1Massachusetts General Hospital Cancer Center, Boston, MA, 2Massachusetts General Hospital, Boston, MA, 3Novartis Institutes for BioMedical Research, Cambridge, MA
Background

• *EGFR* mutations comprise ~15% of lung adenocarcinomas. *EGFR* TKIs are the standard first-line treatment, but resistance typically develops after 9-13 months.

• Many patients who acquire resistance to *EGFR*-targeted therapy undergo a tumor biopsy at the time of progression. T790M is the most common resistance mechanism seen.

• In practice, patients rarely undergo further biopsies during treatment and are commonly categorized as “positive” or “negative” for a particular resistance mechanism (e.g. T790M) based on a single biopsy and timepoint.

• This binary positive/negative classification may underestimate the heterogeneity of resistant cancers and may prevent patients from accessing potentially effective treatment strategies.
Methods

• Retrospective analysis of 221 patients with advanced EGFR-mutant NSCLC seen at Massachusetts General Hospital (MGH) between 2008 and 2016.

• For each patient, we collected data for all biopsies obtained after resistance, including results of clinical molecular testing, treatment history and biopsy complications.
Resistance mechanisms upon initial resistance to *EGFR* TKI therapy (n=221)

Overall T790M-positive: 61%

- **T790M (1 with PIK3CA)**: 46%
- **No Identified Mechanism**: 21%
- **T790M + EGFR Amp**: 15% (1 with PIK3CA, 2 with HER2 Amp)
- **EGFR Amp**: 3%
- **MET Amp**: 5% (1 with PIK3CA, 2 with EGFR Amp, 1 with EGFR + HER2 Amp)
- **SCLC Transformation**: 3% (3 with PIK3CA)
- **PIK3CA**: 2%
- **BRAF**: 1%
- **Not tested/Insufficient**: 4%
Among 83 patients with two post-resistance biopsies, 41 (49%) had variations in the resistance mechanisms identified between biopsy 1 and 2.

- 20% patients “lost” T790M between biopsy 1 and 2
- 11% “gained” T790M

Of the 17 patients who lost T790M, three had a new resistance mechanism identified on the second biopsy.
Conclusions

• Our data suggest that resistance to \textit{EGFR}-targeted therapy is heterogeneous and that the dominant drivers of resistance can fluctuate over time.

• As much as half of the time, the dominant resistance mechanisms observed on one biopsy may no longer be relevant on a second biopsy, and a second biopsy may uncover a new, potentially targetable, resistance mechanism.

• We hope that these findings will prompt clinicians to consider repeat biopsy when selecting a new therapy.

• While we observed that biopsies were generally safe and feasible, noninvasive testing methods, such as liquid biopsies, may provide another method to more easily characterize resistance over time.