Reirradiation of Thoracic Cancers with Intensity Modulated Proton Therapy

J. C. Ho1, Q. N. Nguyen1, H. Li2, P. K. Allen1, X. Zhang2, X. R. Zhu2, D. R. Gomez1, S. H. Lin1, M. T. Gillin2, R. U. Komaki1, Z. Liao1, S. M. Hahn1, and J. Y. Chang1

1Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 2Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
Background

- Challenges in treating recurrent lung cancer
 - Many patients are not candidates for surgery
 - Reirradiation: concerns about cumulative radiation doses to critical organs limit use of higher radiation dose
 - Older techniques resulted in up to 30% serious toxicity

⇒ Patients generally offered only palliative, lower doses of reirradiation
Background

- Proton radiation decreases radiation dose and toxicity to normal tissue, compared to traditional photon radiation.
- 2 types of proton radiation: passive (older) and intensity modulated proton therapy, IMPT (newer).
- IMPT can precisely target the tumor and spare nearby normal tissue, to safely deliver a higher, curative radiation dose.
Method

• Retrospective review of 27 patients treated at MD Anderson Cancer Center from 2011 - 2016

• IMPT for reirradiation of thoracic malignancies, with definitive intent
 • 81% had non-small cell lung cancer
 • 81% had centrally located tumors
 • Median 29.5 months from initial radiation to reirradiation

• Median reirradiation dose 66 Gy

• Median follow-up all patients 11.2 months (25.9 months for patients still alive)
Results

Overall Survival

- Median 18 m
- 1-year OS 54%

Progression Free Survival

- Median 19.3 m
- 1-year PFS 51%

Freedom from Local Failure

- Median NR
- 1-year 78%

Freedom from Locoregional Recurrence

- Median NR
- 1-year 61%
Impact of Reirradiation Dose

<table>
<thead>
<tr>
<th></th>
<th>Higher Dose ≥ 66 Gy</th>
<th>Lower Dose < 66 Gy</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1yr freedom from LF</td>
<td>100%</td>
<td>49%</td>
<td>0.013</td>
</tr>
<tr>
<td>Median freedom from LF</td>
<td>NR</td>
<td>9.1 m</td>
<td></td>
</tr>
<tr>
<td>1yr freedom from LRR</td>
<td>84%</td>
<td>23%</td>
<td>0.035</td>
</tr>
<tr>
<td>Median freedom from LRR</td>
<td>NR</td>
<td>6.8 m</td>
<td></td>
</tr>
<tr>
<td>1yr PFS</td>
<td>76%</td>
<td>14%</td>
<td>0.050</td>
</tr>
<tr>
<td>Median PFS</td>
<td>NR</td>
<td>6.8 m</td>
<td></td>
</tr>
<tr>
<td>1yr OS</td>
<td>62%</td>
<td>46%</td>
<td>0.289</td>
</tr>
<tr>
<td>Median OS</td>
<td>18.5</td>
<td>10.6</td>
<td></td>
</tr>
</tbody>
</table>

Toxicity

<table>
<thead>
<tr>
<th>Type</th>
<th>Grade 1-2</th>
<th>Grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary</td>
<td>19 (70%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Esophagitis</td>
<td>15 (56%)</td>
<td>0</td>
</tr>
<tr>
<td>Dermatitis</td>
<td>10 (37%)</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>23 (85%)</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>Pain</td>
<td>10 (37%)</td>
<td>0</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>3 (11%)</td>
<td>0</td>
</tr>
</tbody>
</table>

- Minimal serious toxicity
- No grade 4 or 5 toxicities
Conclusions

• First report on IMPT for reirradiation of lung cancer
 • Outcomes improved compared to other reirradiation studies
 • Well tolerated, with minimal serious toxicity (7% vs. up to 30% in other studies)
 • Better local control (15% vs 35-40% failure) and survival (median 18 vs. 11-14 months)
 • Higher reirradiation doses (≥ 66 Gy) associated with improved outcomes

• IMPT appears to be the optimal choice for reirradiation:
 • To spare critical structures from the toxicity of cumulative radiation
 • To deliver curative reirradiation doses for challenging, central tumors