Quality Care in Radiation Oncology: Refining Treatments

ASTRO News Briefing
Monday, September 25, 2017
ASTRO News Briefing
Quality Care in Radiation Oncology: Refining Treatments
Monday, September 25, 11:00am-12:00pm PT
Moderator: Paul Harari, MD, FASTRO, ASTRO President-elect, University of Wisconsin

A phase III trial of pelvic radiation therapy versus vaginal cuff brachytherapy followed by paclitaxel/carboplatin chemotherapy in patients with high-risk, early stage endometrial cancer: A Gynecology Oncology Group study
Marcus Randall, MD, FASTRO, University of Kentucky

Two-year results for MC1273, a phase II evaluation of aggressive dose de-escalation for adjuvant chemoradiation in HPV+ oropharynx squamous cell carcinoma (OPSCC)
Daniel Ma, MD, Mayo Clinic

Novel associations between the immune landscape of prostate cancer and post-operative radiation response
Shuang (George) Zhao, MD, University of Michigan

Hypofractionated radiation therapy after mastectomy for the treatment of high-risk breast cancer: five-year follow-up result of a randomized trial
Shulian Wang, MD, Chinese Academy of Medical Sciences
A Phase III Trial of Pelvic Radiation Therapy versus Vaginal Cuff Brachytherapy Followed by Paclitaxel/Carboplatin Chemotherapy in Patients with High-risk, Early-stage Endometrial Cancer: A Gynecology Oncology Group Study

M. Randall1, V. Filiaci2, D. McMeekin3, C. M. Yashar4, R. Mannel3, R. Salani5, P. DiSilvestro6, J. Burke7, T. Rutherford8, N. Spirtos9, J. Cho10, J. Kim11,12, P. Anderson13, W. Brewster14, W. Small15, M. Carney16, C. Aghajanian17, and D. S. Miller18

1University of Kentucky, Lexington, KY, 2NRG Oncology Statistics and Data Management Center, Buffalo, NY, 3University of Oklahoma, Oklahoma City, OK, 4University of California San Diego, San Diego, CA, 5The Ohio State University, Columbus, OH, 6Brown University, Providence, RI, 7Memorial University, Savannah, GA, 8Yale Gynecologic Oncology, New Haven, CT, 9Women’s Cancer Center of Nevada, Las Vegas, NV, 10University of Hawaii, Honolulu, HI, 11Seoul National University, Seoul, Korea, Republic of (South), 12Korean Gynecologic Oncology Group, Seoul, Korea, Republic of (South), 13Fox Chase Cancer Center, Philadelphia, PA, 14University of North Carolina, Chapel Hill, NC, 15Loyola University Medical Center, Maywood, IL, 16University of Hawaii Cancer Center, Honolulu, HI, 17Memorial Sloan Kettering Cancer Center, New York, NY, 18University of Texas-Southwestern, Dallas, TX
Background

• Management of high risk, early stage endometrial cancer is controversial.

• Historically, adjuvant pelvic radiation therapy is standard for patients thought to be at significant risk of local recurrence after surgery.

• Most recognized local recurrences occur at the vaginal cuff, although metastatic failure occurs in 1 of 5 patients with high risk disease.

• Combination chemotherapy has demonstrated improved outcomes in more advanced disease, e.g. stage III and IV.

• Trend toward increased use of vaginal brachytherapy. Data suggests similar excellent ability to limit cuff recurrences compared to external RT.

• Needed a direct comparison of the standard approach (pelvic RT) to the more experimental treatment of cuff brachytherapy and chemotherapy.
Method

- 1:1 randomized comparison, phase III study. Intent to treat analysis.
- Designed to test if VCB/C is superior to PXRT (not equivalency study)
- **Primary objective:** To determine if treatment with Vaginal Cuff Brachytherapy and Chemotherapy (VCB/C) reduces the rate of recurrence or death (improves Recurrence Free Survival, RFS) compared to Pelvic Radiation Therapy (PXRT)
- **Secondary objectives:** Overall Survival (OS), patterns of failure, toxicity/functioning between arms
- Close follow-up for recurrence (including regular imaging) and toxicity
- Toxicity grading used NCI Common Terminology Criteria for Adverse Events, version 3
Relapse Free Survival by Randomized Treatment

VBT + Chemotherapy

Hazard Ratio: 0.919
90% Hazard Ratio Confidence Limits: 0.688 to 1.226
Overall Survival by Randomized Treatment

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Hazard</th>
<th>90% Hazard Ratio</th>
<th>Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBT + Chemotherapy</td>
<td>1.041</td>
<td>0.713</td>
<td>1.518</td>
</tr>
</tbody>
</table>

Events	Total
39 | 300
37 | 301

Months on Study

Proportion Alive
Results

• 36 month RFS = 82% for both PXRT and VCB/C
• 36 months OS = 91% for PXRT and 88% for VCB/C (p = 0.57)
• No difference in vaginal or distant failure rates
• Pelvic and Para-aortic nodal failures more common in VCB/C arm (estimated 9% at 5 years, vs 4% in the PXRT arm, Hazard Ratio 0.47)
• Estimated rate of vaginal and distant recurrences: 2.5% and 18% at 5 years, not different between the arms
• No significant treatment heterogeneity between the 2 arms with respect to RFS and OS
 • Variables studied include Stage, Histology, Performance Status, LND
Cumulative Incidence of Pelvic or PA Recurrence
Competing Event is Death Prior to Recurrence of Interest

Assigned Treatment
- VBT + Chemotherapy
- WPRT

Cumulative Proportion

Months from Study Activation

0 12 24 36 48 60 72
Conclusions

• This large randomized phase III study did not demonstrate superiority of VCB/C over PXRT in a cohort of patients with High Risk, Early Stage Endometrial Carcinoma.

• RFS and OS were not improved with VCB/C compared to PXRT. This conclusion applies to all subgroups analyzed, including patients with serous and clear cell histology.

• Analysis of failure patterns showed a significantly lower nodal failure rate in the PXRT arm. Distant failure is the predominant failure pattern in this patient population (18% in both arms).
Conclusions

• Acute toxicity was significantly greater in VCB/C arm, while late toxicity was similar in the 2 arms.

• Pelvic radiation therapy remains an appropriate (and probably preferable) treatment for high risk, early stage endometrial carcinoma.

• Better treatment strategies to address the risk of systemic disease will be necessary to further improve outcomes in this patient group.
A phase III trial of pelvic radiation therapy versus vaginal cuff brachytherapy followed by paclitaxel/carboplatin chemotherapy in patients with high-risk, early stage endometrial cancer: A Gynecology Oncology Group study

Marcus Randall, MD, FASTRO, University of Kentucky

Two-year results for MC1273, a phase II evaluation of aggressive dose de-escalation for adjuvant chemoradiation in HPV+ oropharynx squamous cell carcinoma (OPSCC)

Daniel Ma, MD, Mayo Clinic

Novel associations between the immune landscape of prostate cancer and post-operative radiation response

Shuang (George) Zhao, MD, University of Michigan

Hypofractionated radiation therapy after mastectomy for the treatment of high-risk breast cancer: five-year follow-up result of a randomized trial

Shulian Wang, MD, Chinese Academy of Medical Sciences
Two Year Results for MC1273, a Phase II Evaluation of Aggressive Dose De-escalation for Adjuvant Chemoradiation in HPV+ Oropharynx Squamous Cell Carcinoma (OPSCC)

D. J. Ma¹, K. Price², E. J. Moore³, S. H. Patel⁴, M. L. Hinni⁵, A. V. Chintakuntlawar², J. J. Garcia⁶,⁷, D. Graner⁸, M. A. Neben-Wittich¹, Y. Garces¹, C. L. Hallemeier¹, D. L. Price³, J. L. Kasperbauer³, J. R. Janus³, N. R. Foster⁹, and R. L. Foote¹

¹Department of Radiation Oncology, Mayo Clinic, Rochester, MN, ²Division of Medical Oncology, Mayo Clinic, Rochester, MN, ³Department of Otolaryngology, Mayo Clinic, Rochester, MN, ⁴Mayo Clinic, Scottsdale, AZ, ⁵Department of Otolaryngology, Mayo Clinic, Phoenix, AZ, ⁶Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, ⁷Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, ⁸Department of Neurology, Mayo Clinic, Rochester, MN, ⁹Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
Background: HPV-related oropharynx cancer

- Although cure rates for HPV-OPC are high, standard treatment can have serious and potentially life-altering side effects.

- Multiple research groups are currently exploring incremental reductions in radiation dose for HPV-OPC.

- MC1273 explored an aggressive course of treatment reduction by halving the dose of radiation after surgery.
Methods

p16+ oropharynx patients <10 pack-year smoking history margin clearing surgery

Cohort A: n= 37
≥T3, ≥N2, lymphovascular invasion, or perineural invasion

30 Gy (1.5 Gy bid x 10 days) + weekly docetaxel (15 mg/m²) x 2

Cohort B: n=43
Extracapsular extension

36 Gy (1.8 Gy bid x 10 days) + weekly docetaxel (15 mg/m²) x 2

Follow-up
Swallow Studies
Quality of Life Assessment

Standard Treatment: 60 - 66 Gy over six weeks ± cisplatin
Patients

- **Median age**: 60.5 years (range: 25-77 years)

- **Gender**: 73 Male, 7 Female

- **Median follow-up**: 23.6 months (12 – 46)

<table>
<thead>
<tr>
<th>T Category</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT1</td>
<td>38</td>
<td>47.50</td>
</tr>
<tr>
<td>pT2</td>
<td>29</td>
<td>36.25</td>
</tr>
<tr>
<td>pT3</td>
<td>8</td>
<td>10.00</td>
</tr>
<tr>
<td>pT4a</td>
<td>5</td>
<td>6.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N Category</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>pN0</td>
<td>3</td>
<td>3.75</td>
</tr>
<tr>
<td>pN1</td>
<td>10</td>
<td>12.50</td>
</tr>
<tr>
<td>pN2a</td>
<td>23</td>
<td>28.75</td>
</tr>
<tr>
<td>pN2b</td>
<td>29</td>
<td>36.25</td>
</tr>
<tr>
<td>pN2c</td>
<td>7</td>
<td>8.75</td>
</tr>
<tr>
<td>pN3</td>
<td>8</td>
<td>10.00</td>
</tr>
</tbody>
</table>
Results: Progression Free Survival

- 2-yr PFS: 91.3%
- RTOG 0234: 2-yr PFS 86.4%
- Distant Recurrence: n = 4
- Locoregional Recurrence: n = 3
Results: Locoregional Control

- 2-yr LRC: 96.3%
- Local Recurrence: n = 2
- Nodal Recurrence: n = 1
Results: Toxicity and Swallowing

• Grade ≥2 toxicity rate at two years post-treatment was 10%
 → RTOG 0234 rate was 55%

• No patients required a feeding tube placed during treatment.

• Swallowing function improved between pre-radiation and 12 month follow-up. (MBSImp Oral: 1.5±1.9 vs 1.5±1.8 p=n.s., Pharyngeal 5.8±3.9 vs 4.7±3.6 p= 0.02.)

• Quality of life (EORTC-HN, FACT-HN and Eq-5D) remained essentially unchanged between pre and post-treatment.
Conclusions

• Aggressive treatment de-escalation resulted in disease control rates comparable to historical controls.

• De-escalated therapy led to significantly improved post-treatment side effects, improved long-term swallowing function and improved quality of life.

• A multi-institutional, phase III study (NCT02908477: “DART-HPV”) is currently open for accrual.
A phase III trial of pelvic radiation therapy versus vaginal cuff brachytherapy followed by paclitaxel/carboplatin chemotherapy in patients with high-risk, early stage endometrial cancer: A Gynecology Oncology Group study

Marcus Randall, MD, FASTRO, University of Kentucky

Two-year results for MC1273, a phase II evaluation of aggressive dose de-escalation for adjuvant chemoradiation in HPV+ oropharynx squamous cell carcinoma (OPSCC)

Daniel Ma, MD, Mayo Clinic

Novel associations between the immune landscape of prostate cancer and post-operative radiation response

Shuang (George) Zhao, MD, University of Michigan

Hypofractionated radiation therapy after mastectomy for the treatment of high-risk breast cancer: five-year follow-up result of a randomized trial

Shulian Wang, MD, Chinese Academy of Medical Sciences
Novel Associations Between the Immune Landscape of Prostate Cancer and Postoperative Radiation Response

S. G. Zhao1, J. Lehrer2, S. L. Chang3, N. G. Erho2, M. Sjostrom4, R. B. Den5, S. J. Freedland6, E. A. Klein7, R. J. Karnes8, E. M. Schaeffer9, M. Xu10, R. Das11, A. J. Chang12, P. L. Nguyen13, E. Davicioni2, A. E. Ross14, L. Fong3, D. E. Spratt1, and F. Y. Feng15

1University of Michigan, Ann Arbor, MI, 2GenomeDx Biosciences, Vancouver, BC, Canada, 3University of California - San Francisco, San Francisco, CA, 4Lund University, Lund, Sweden, 5Sidney Kimmel Medical College at Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA, 6Cedars-Sinai, Los Angeles, CA, 7Cleveland Clinic, Cleveland, OH, 8Department of Urology, Mayo Clinic, Rochester, MN, 9Northwestern University, Evanston, IL, 10UCSF Department of Radiation Oncology, San Francisco, CA, 11University of California - San Francisco, Ann Arbor, MI, 12University of California, San Francisco, San Francisco, CA, 13Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, 14Johns Hopkins Medicine, Baltimore, MD, 15University of California at San Francisco, San Francisco, CA
Background

- Role of immunotherapy in prostate cancer is not well defined
- Sipuleucel-T: first FDA approved cellular therapy shown to improve OS (Kantoff et al. NEJM 2010)
- Negative randomized trials for ipilimumab (CTLA-4) for primary endpoint OS (Beer et al. JCO 2017; Kwon et al. Lancet Onc 2014)
 - Improved PSA response suggesting therapeutic effect in subset
- Understanding immune infiltrate may be critical to predict response to various therapeutic strategies
- Difficult to histologically assess intra-tumoral immune infiltrate directly
Purpose

Leverage high throughput transcriptomic profiling and computational methods to characterize the immune landscape of localized prostate cancer.
Methods

• Retrospective (N=1567) and prospective (N=7826) radical prostatectomy samples on a clinical grade microarray platform
 • Clinical outcomes available on retrospective data only
• Immune Content Score derived from immune cell specific genes in the literature
• Relative fractions of immune cells estimated using Cibersort
Immune Pathways Cluster in Prostate Cancer

Tumor samples
N=9393
Immune Content Score May Predict Response to Post-op RT

Multivariate (adjusting for clinicopathologic variables and ADT use) interaction: **P-value = 0.017**
Conclusions

• Computationally estimated the immune infiltrate in 9393 localized prostate cancer samples and identified a potentially high-immune subset
• Immune content appears to be prognostic as well as predict response to post-op radiotherapy
• First report of PD-L2 as a potential novel target for checkpoint inhibition in prostate cancer
A phase III trial of pelvic radiation therapy versus vaginal cuff brachytherapy followed by paclitaxel/carboplatin chemotherapy in patients with high-risk, early stage endometrial cancer: A Gynecology Oncology Group study

 Marcus Randall, MD, FASTRO, University of Kentucky

Two-year results for MC1273, a phase II evaluation of aggressive dose de-escalation for adjuvant chemoradiation in HPV+ oropharynx squamous cell carcinoma (OPSCC)

 Daniel Ma, MD, Mayo Clinic

Novel associations between the immune landscape of prostate cancer and post-operative radiation response

 Shuang (George) Zhao, MD, University of Michigan

Hypofractionated radiation therapy after mastectomy for the treatment of high-risk breast cancer: five-year follow-up result of a randomized trial

 Shulian Wang, MD, Chinese Academy of Medical Sciences
Hypofractionated Radiation Therapy After Mastectomy for the Treatment of High-Risk Breast Cancer: Five-Year Follow-Up Results of a Randomized Trial

Guang-yi Sun, Shulian Wang, Yong-wen Song, Jing Jin, Wei-hu Wang, Yue-ping Liu, Hua Ren, Hui Fang, Zi-hao Yu, Xin-fan Liu, and Ye-xiong Li

PI: Ye-xiong Li, Shulian Wang

National Cancer Center/Cancer Hospital and Institute, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
Background

• For high-risk breast cancer after mastectomy, conventionally fractionated radiation therapy (CFRT), 2.0Gy/fx, 25fx over five weeks, to chest wall and nodal regions can improve outcomes

• There is an underuse of RT after mastectomy (PMRT) in China, because of a lack of RT facilities, medical cost burden, et. al. – 52% in stage III

• Hypofractionated RT (HFRT) (>2.0Gy/fx, fewer total fractions) is safe and effective after breast-conserving surgery

• There is no level I efficacy evidence for HFRT after mastectomy
Method

A randomized phase III non-inferior trial comparing HFRT and CFRT (Noninferiority margin: 5% difference in 5-yr LRR rate)

Target sample = 820 (June 2008 - June 2016)

Stage III breast cancer patients after mastectomy

R

1:1

CFRT
2Gy*25f, 5wks
(n=414)

HFRT
2.9Gy*15f, 3wks
(n=404)
Results

• The two arms were well balanced according to majority of prognostic factors.

• No grade 4-5 toxicities occurred in either arm.

• Hypofractionated RT arm had less grade 3 acute skin toxicity (p=0.008).

• No differences in radiation pneumonitis, late skin toxicity, lymphedema, and brachial plexopathy (at any grade) between the two arms.
Results – Locoregional Recurrence

Median follow up time: 53 months (5-111)

<table>
<thead>
<tr>
<th>5-year Actuarial Rates (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRT</td>
</tr>
<tr>
<td>HFRT</td>
</tr>
<tr>
<td>Difference</td>
</tr>
<tr>
<td>HR</td>
</tr>
</tbody>
</table>
Results – Overall Survival

<table>
<thead>
<tr>
<th>Treatment Assignment</th>
<th>CFRT</th>
<th>5-year OS Rate (95% CI)</th>
<th>HFRT</th>
<th>5-year OS Rate (95% CI)</th>
<th>HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85.6%</td>
<td>(80.9, 89.2)</td>
<td>83.2%</td>
<td>(78.3, 87.1)</td>
<td>1.13</td>
<td>(0.78, 1.62)</td>
</tr>
</tbody>
</table>

Overall Survival

Number at risk

<table>
<thead>
<tr>
<th>Time(years)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number at risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFRT</td>
<td>409</td>
<td>403</td>
<td>355</td>
<td>296</td>
<td>225</td>
<td>167</td>
</tr>
<tr>
<td>HFRT</td>
<td>401</td>
<td>396</td>
<td>346</td>
<td>289</td>
<td>234</td>
<td>163</td>
</tr>
</tbody>
</table>

Cumulative number of events

<table>
<thead>
<tr>
<th>Time(years)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative number of events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFRT</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>21</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>HFRT</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>29</td>
<td>40</td>
<td>51</td>
</tr>
</tbody>
</table>
Results – Disease-free Survival

<table>
<thead>
<tr>
<th>5-year DFS Rates (95% CI)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRT</td>
<td>70.7% (65.2, 75.4)</td>
</tr>
<tr>
<td>HFRT</td>
<td>74.6% (69.6, 79.3)</td>
</tr>
<tr>
<td>HR</td>
<td>0.88 (0.67, 1.16)</td>
</tr>
</tbody>
</table>
Results – Distant Failure

5-year DF Rates (95% CI)

- CFRT: 26.2% (21.5, 31.2)
- HFRT: 23.2% (18.9, 27.8)
- HR: 0.90 (0.67, 1.20)
Conclusions

• Hypofractionated RT after mastectomy (2.9Gy/fx, 15fx, in 3wks) is not inferior to and is as safe as conventional fractionated RT.

• It shortens treatment time, saves medical resources, reduces medical cost, makes RT more convenient.

• This is the first large, well-conducted randomized trial to demonstrate conclusively that hypofractionated radiation therapy to nodal regions of breast cancer is safe and effective in the postmastectomy setting.
ASTRO News Briefing
Quality Care in Radiation Oncology: Refining Treatments
Monday, September 25, 11:00am-12:00pm PT
Moderator: Paul Harari, MD, FASTRO, ASTRO President-elect, University of Wisconsin

A phase III trial of pelvic radiation therapy versus vaginal cuff brachytherapy followed by paclitaxel/carboplatin chemotherapy in patients with high-risk, early stage endometrial cancer: A Gynecology Oncology Group study
 Marcus Randall, MD, FASTRO, University of Kentucky

Two-year results for MC1273, a phase II evaluation of aggressive dose de-escalation for adjuvant chemoradiation in HPV+ oropharynx squamous cell carcinoma (OPSCC)
 Daniel Ma, MD, Mayo Clinic

Novel associations between the immune landscape of prostate cancer and post-operative radiation response
 Shuang (George) Zhao, MD, University of Michigan

Hypofractionated radiation therapy after mastectomy for the treatment of high-risk breast cancer: five-year follow-up result of a randomized trial
 Shulian Wang, MD, Chinese Academy of Medical Sciences
Q & A

Online attendees: Please use the Question function to submit questions.
Interview Requests and Other Questions:

ASTRO’s On-site Press Office in San Diego
 Room 24B, San Diego Convention Center
 September 24-26, 8am-5pm PT; September 27, 8am-12pm PT

Phone: 703-286-1600

Email: press@astro.org

Slides, audio and hi-res photos will be available following the briefing at www.astro.org/AMpress