ENHANCING VALUE
IMPROVING OUTCOMES
ASTRO'S 58TH ANNUAL MEETING
Welcome
ASTRO News Briefing: Expanding Access to Care
Monday, September 26, 10:30-11:30am ET
Moderator: Brian Kavanagh, MD, FASTRO, University of Colorado

• Reducing Racial Disparities in Treatment for Early Stage Lung Cancer with a Multimodal Intervention
 Matthew Manning, MD, Cone Health Cancer Center, Greensboro, NC

• Outcomes in Elderly Stage I Non-Small Cell Lung Cancer in the SBRT Era: A SEER Analysis
 Andrew M. Farach, MD, Houston Methodist Hospital

• Survival with Stereotactic Body Radiation Therapy (SBRT) and Conventional Radiation Therapy (CRT) in Stage I NSCLC Patients in the Veterans Health Administration
 Matthew J. Boyer, MD, PhD, Duke University

• Radiotherapy Utilization in Middle Income Countries
 Elena Fidarova, MD, International Atomic Energy Agency, Vienna
Reducing Racial Disparities in Treatment for Early Stage Lung Cancer with a Multimodal Intervention

M. Manning1, S. Cykert2, E. Eng2, M. K. Yee3, L. Robertson3, C. Hardy2, J. Schaal4, D. E. Heron3, N. Jones4, K. Foley3, B. Smith1, L. Alexandra2, C. Samuel2, and Z. Gizlice2

1Cone Health Cancer Center, Greensboro, NC, 2University of North Carolina, Chapel Hill, NC, 3University of Pittsburgh Cancer Institute, Pittsburgh, PA, 4The Partnership Project, Greensboro, NC
Background

• Surgical resection (R) and stereotactic body radiotherapy (SBRT) in early stage lung cancer represent potentially curative treatments.

• Historically, controlling for age, comorbidities and other important factors, fewer black than white patients undergo curative surgery resulting in higher mortality.

• Accountability for Cancer Care through Undoing Racism and Equity (ACCURE) is an NIH sponsored multi-institutional trial designed to test a multimodal intervention to reduce racial disparities and increase treatment completion for all early stage breast and lung cancer.
Background

• The ACCURE multi-modal systems change consists of:
 • Real time registry with automated alerts for missed appointments and unmet milestones in expected care
 • Race-specific data feedback on treatment adherence
 • ACCURE nurse navigator trained in race-specific barriers with special training regarding trust, culturally appropriate communication, and Kleinman's explanatory model
 • Quarterly Health Equity Education Training (HEET) sessions for staff.
Materials/Methods

• Participants: White and African American patients with Stage 1-2 lung cancer
• Primary Outcome: Lung Resection Surgery or SBRT within 4 months of diagnosis
• 5-year interrupted time-series with an embedded randomized controlled trial

<table>
<thead>
<tr>
<th>Baseline</th>
<th>ACCURE</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Years of retrospective data for participating cancer center populations obtained as a baseline group</td>
<td>Enrolled, consented RCT patients in the real time registry system randomized to:</td>
<td>Total cancer center population data during the ACCURE study to account for secular trends and possible spillover effect of the study intervention across the cancer center</td>
</tr>
<tr>
<td></td>
<td>ACCURE Navigator vs. Usual Care</td>
<td></td>
</tr>
</tbody>
</table>
Results: Treatment Rates by Race

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R + SBRT</td>
<td>R</td>
<td>R + SBRT</td>
</tr>
<tr>
<td>Black</td>
<td>64%</td>
<td>55%</td>
<td>96%*</td>
</tr>
<tr>
<td>White</td>
<td>76%</td>
<td>61%</td>
<td>96%*</td>
</tr>
</tbody>
</table>

*p<0.05 compared to baseline

Graph 1:
- **Baseline:** Black: 55%, White: 61%
- **ACCURE:** Black: 96%, White: 96%
- **Control:** Black: 85%, White: 87%

Graph 2:
- **Baseline:** Black: 55%, White: 61%
- **ACCURE:** Black: 96%, White: 96%
- **Control:** Black: 85%, White: 87%
Results

• Overall treatment improved significantly in the enrolled ACCURE intervention group and control group compared to baseline.

• The statistically significant treatment disparity also resolved.

• The surgical approach was the vehicle of improvement within the ACCURE intervention cohort.

• SBRT explained improved care and resolution of disparities in the overall cancer center populations.

• In the randomized controlled trial, comparing ACCURE navigator vs. usual care, there was elimination of disparity with high rates of treatment completion in both arms without statistically significant difference.
Conclusions

• In this study, the ACCURE intervention increased overall rates of treatment completion and eliminated treatment differences for blacks and whites with early stage lung cancer.

• A spillover effect was observed for the total population of participating cancer centers.

• Health Systems can eliminate racial disparity with systems change through engagement with community organizations:

 http://greensborohealth.org
 http://rei.racialequityinstitute.org
• Reducing Racial Disparities in Treatment for Early Stage Lung Cancer with a Multimodal Intervention
 Matthew Manning, MD, Cone Health Cancer Center, Greensboro, NC

• Outcomes in Elderly Stage I Non-Small Cell Lung Cancer in the SBRT Era: A SEER Analysis
 Andrew M. Farach, MD, Houston Methodist Hospital

• Survival with Stereotactic Body Radiation Therapy (SBRT) and Conventional Radiation Therapy (CRT) in Stage I NSCLC Patients in the Veterans Health Administration
 Matthew J. Boyer, MD, PhD, Duke University

• Radiotherapy Utilization in Middle Income Countries
 Elena Fidarova, MD, International Atomic Energy Agency, Vienna
Outcomes in Elderly Stage I Non-Small Cell Lung Cancer in the SBRT Era: A SEER Analysis

S. M. Dalwadi1, S. Szeja2, B. S. Teh3, E. B. Butler3, and A. M. Farach3

1Texas A&M College of Medicine/Scott and White Memorial Hospital, Temple, TX, 2University of Texas Medical Branch at Galveston, Galveston, TX, 3Houston Methodist Hospital, Houston, TX
Background & Purpose

% New Cases NSCLC by Age

% Total Cases Receiving SBRT by Year

SEER 18, Cancer StatFacts (2009-2013)

Corso et al, American Journal of Clinical Oncology (2014)
Purpose

To review outcomes in elderly stage I NSCLC based on treatment modality using the SEER database for patients treated between 2004 and 2012.
Method

• Retrospective population-based study
 • National SEER-18 Database
 • Biopsy-proven stage I NSCLC
 • Age 60+
 • 2004-2012
 • Excluded patients without definitive records for local therapy

• N = 62,213
Results

Number of Patients:

No Treatment = 7,373

Radiation Only: 11,589

Surgery Only: 41,509
Results

Absolute increase in OS at 23 months:
- Surgery: 5%
- Radiation: 19%

Absolute increase in CSS at 23 months:
- Surgery: 4%
- Radiation: 24%
Conclusions

• With advancing age, radiation replaces surgery as the most appropriate treatment modality for early-stage NSCLC.

• Concurrent with the adoption of SBRT as a community standard, both overall survival and lung-cancer specific survival have improved dramatically for patients age 60+ with stage I NSCLC patients treated with radiation alone.
 • OS at 23 months increased 19%
 • CSS at 23 months increased 24%

• SBRT may improve access to care.
ASTRO News Briefing: Expanding Access to Care
Monday, September 26, 10:30-11:30am ET
Moderator: Brian Kavanagh, MD, FASTRO, University of Colorado

- Reducing Racial Disparities in Treatment for Early Stage Lung Cancer with a Multimodal Intervention
 Matthew Manning, MD, Cone Health Cancer Center, Greensboro, NC

- Outcomes in Elderly Stage I Non-Small Cell Lung Cancer in the SBRT Era: A SEER Analysis
 Andrew M. Farach, MD, Houston Methodist Hospital

- Survival with Stereotactic Body Radiation Therapy (SBRT) and Conventional Radiation Therapy (CRT) in Stage I NSCLC Patients in the Veterans Health Administration
 Matthew J. Boyer, MD, PhD, Duke University

- Radiotherapy Utilization in Middle Income Countries
 Elena Fidarova, MD, International Atomic Energy Agency, Vienna
Survival with Stereotactic Body Radiation Therapy (SBRT) and Conventional Radiation Therapy (CRT) in Stage I NSCLC Patients in the Veterans Health Administration

M. J. Boyer¹, C. Williams², M. J. Kelley³, and J. K. Salama¹

¹Duke University Medical Center, Durham, NC, ²Durham Veterans Affairs Medical Center, Durham, NC, ³Durham VA Hospital and Duke University, Department of Medical Oncology, Durham, NC
Background: Stage I NSCLC

- Survival and tumor control following SBRT significantly greater than historical outcomes with conventionally fractionated RT

- At time of this analysis, direct comparison of the two regimens is lacking

<table>
<thead>
<tr>
<th>Treatment</th>
<th>3 year LC</th>
<th>Median Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBRT (54 Gy/3) – Timmerman</td>
<td>90.6%</td>
<td>48.1 months</td>
</tr>
<tr>
<td>CRT (70 Gy/35) – Bradley</td>
<td>63%</td>
<td>24 months</td>
</tr>
<tr>
<td>CRT (80.5 Gy/35) – Urbanic</td>
<td>64%</td>
<td>24 months</td>
</tr>
</tbody>
</table>
Methods

• VA Central Cancer Registry (VACCR) and Corporate Data Warehouse (CDW) from 2001-2010

• Patients
 • Clinical stage I non-small cell lung cancer
 • Conventional radiation treatment (CRT) – 20 or more fractions by procedural codes or direct documentation
 • Stereotactic body radiation therapy (SBRT) – SBRT procedural codes or direct documentation
Patients

Stage I NSCLC
n=14,177

Radiation
n=3,012

Conventional Fractionation (CRT) n=1,203

Stereotactic Body Radiation Therapy (SBRT) n=468

Radiation

Mean Age 72 years
Smoking History 89.4%
Male 98.6%
Stage IA 50.5%
Squamous cell 41.5%
Improved Survival in Radiation Cohort with Increased SBRT Utilization

<table>
<thead>
<tr>
<th>Year of Diagnosis</th>
<th>2001</th>
<th>2010</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 year overall survival</td>
<td>12.7%</td>
<td>28.5%</td>
<td><0.01</td>
</tr>
<tr>
<td>4 year lung cancer specific survival</td>
<td>33.9%</td>
<td>50.4%</td>
<td><0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiation Type</th>
<th>2001</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT</td>
<td>95.1%</td>
<td>4.9%</td>
</tr>
<tr>
<td>SBRT</td>
<td>39.7%</td>
<td>60.3%</td>
</tr>
</tbody>
</table>
Improved Survival Following SBRT

4 year OS

<table>
<thead>
<tr>
<th></th>
<th>SBRT</th>
<th>CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37.0%</td>
<td>18.8%</td>
</tr>
<tr>
<td>HR</td>
<td>0.60</td>
<td>(95% CI 0.54-0.68)</td>
</tr>
</tbody>
</table>

4 year LCSS

<table>
<thead>
<tr>
<th></th>
<th>SBRT</th>
<th>CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53.2%</td>
<td>28.3%</td>
</tr>
<tr>
<td>HR</td>
<td>0.48</td>
<td>(95% CI 0.38-0.60)</td>
</tr>
<tr>
<td>Variable</td>
<td>Cox Univariate Analysis</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>SBRT vs CRT</td>
<td>0.60</td>
<td>0.54-0.68</td>
</tr>
<tr>
<td>PET vs No PET</td>
<td>0.80</td>
<td>0.72-0.88</td>
</tr>
<tr>
<td>Treatment Era</td>
<td>2001-2005</td>
<td>-</td>
</tr>
<tr>
<td>SCC vs Non-SCC</td>
<td>1.16</td>
<td>1.02-1.33</td>
</tr>
<tr>
<td>Stage IA vs IB</td>
<td>0.67</td>
<td>0.60-0.74</td>
</tr>
<tr>
<td>CCI</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.34</td>
</tr>
<tr>
<td>Age, per year</td>
<td>1.01</td>
<td>1.00-1.02</td>
</tr>
</tbody>
</table>
Conclusions

• Overall survival for Stage I NSCLC patients in the VHA treated with radiation more than doubled from 2001-2010

• Overall survival and lung cancer specific survival are significantly improved with SBRT compared to conventional fractionation

• Increased use of SBRT strongly associated with improved survival
• Reducing Racial Disparities in Treatment for Early Stage Lung Cancer with a Multimodal Intervention
 Matthew Manning, MD, Cone Health Cancer Center, Greensboro, NC

• Outcomes in Elderly Stage I Non-Small Cell Lung Cancer in the SBRT Era: A SEER Analysis
 Andrew M. Farach, MD, Houston Methodist Hospital

• Survival with Stereotactic Body Radiation Therapy (SBRT) and Conventional Radiation Therapy (CRT) in Stage I NSCLC Patients in the Veterans Health Administration
 Matthew J. Boyer, MD, PhD, Duke University

• Radiotherapy Utilization in Middle Income Countries
 Elena Fidarova, MD, International Atomic Energy Agency, Vienna
Radiotherapy Utilization in Middle Income Countries: International Atomic Energy Agency Study

E. Rosenblatt¹, E. Fidarova¹, E. Zubizarreta¹, M. B. Barton², W. MacKillop³, G. W. Jones⁴, L. A. Cordero⁵, J. Yarney⁶, G. C. Lim⁷, J. Gan⁸, V. Cernea⁹, S. Stojanovic-Rundic¹⁰, P. Strojan¹¹, L. Kochbati², and A. Quarneti¹³

¹International Atomic Energy Agency, Vienna, Austria, ²University of New South Wales Australia, Sydney, Australia, ³Kingston General Hospital, Ontario, ON, Canada, ⁴Trillium Health Partners, Mississauga, ON, Canada, ⁵Hospital Mexico, La Uruca, Costa Rica, ⁶Korle Bu Teaching Hospital, Accra, Ghana, ⁷National Cancer Institute, Putrajaya Malaysia, Putrajaya, Malaysia, ⁸Jose R. Reyes Memorial Medical Centre, Manila, Philippines, ⁹Oncology Institute Cluj-Napoca, Cluj Napoca, Romania, ¹⁰Institute of Oncology and Radiology of Serbia, Belgrade, Serbia, ¹¹Institute of Oncology, radiation Oncology, Ljubljana, Slovenia, ¹²Institut national de cancer Salah Azaiz; Ministère de la santé publique, TUNIS, Tunisia, ¹³Centro Hospitalario Pereira Rossell, Montevideo, Uruguay
Background

• Planning national radiotherapy (RT) services is a complex task and above all, requires reliable data on the demand for RT

• Unmet need for RT can be estimated based on knowledge about optimal and actual radiotherapy utilization (oRTU and aRTU)

• Data on RTU is mainly available for high-income countries (HICs); for low- and middle-income countries (LMICs) more evidence is needed

• International Atomic Energy Agency (IAEA) conducted a study on RTU in nine MICs around the world
Method

- 9 MICs from Africa, Asia, Latin America and Europe (World Bank classification of economies, 2012)

- oRTU calculated using epidemiological evidence-based method:
 - Cancer incidence data from GLOBOCAN 2012
 - Radiotherapy indication trees from the CCORE group*

- aRTU calculated using:
 - Data on total number of cases treated with RT in 2012 (provided by participating countries)
 - Total number of new cancer cases diagnosed in 2012 (GLOBOCAN 2012)

- Unmet RT need calculated using:
 - oRTU and aRTU country data

*Delaney et al, Cancer 2005
*Barton et al, Radiother Oncol 2014
Results

- Unmet RT need:
 - 82.3% (GHA) to 18% (TUN)
- Most difficult situation (unmet RT need >80%) in countries with large population and low number of teletherapy machines (GHA, PHI)

Median oRTU rate: 52%
Median aRTU rate: 28%

Actual RTU vs. optimal RTU rates in 9 MICs

Correlation between % unmet RT need and number of TT machines/1000 cancer cases
Conclusions

• Optimal RTU rates in MICs are similar to those in HICs

• Nearly half of eligible cancer patients in nine MICs do not have access to RT

• Underutilization of RT could be explained by inadequate radiotherapy capacity and obstacles in access to existing RT services

• National radiotherapy services should be rationally planned in order to improve access to RT
Reducing Racial Disparities in Treatment for Early Stage Lung Cancer with a Multimodal Intervention
Matthew Manning, MD, Cone Health Cancer Center, Greensboro, NC

Outcomes in Elderly Stage I Non-Small Cell Lung Cancer in the SBRT Era: A SEER Analysis
Andrew M. Farach, MD, Houston Methodist Hospital

Survival with Stereotactic Body Radiation Therapy (SBRT) and Conventional Radiation Therapy (CRT) in Stage I NSCLC Patients in the Veterans Health Administration
Matthew J. Boyer, MD, PhD, Duke University

Radiotherapy Utilization in Middle Income Countries
Elena Fidarova, MD, International Atomic Energy Agency, Vienna
Q & A

Online attendees: Please use the question function to submit questions.
Additional questions and interview requests:

ASTRO’s On-site Press Office in Boston
Room 151A, Boston Convention and Exhibition Center
September 25-27, 8am-4pm ET; September 28, 8am-12pm ET
703-286-1600
press@astro.org

Slides, photos, and audio will be available following the briefing at
www.astro.org/AMpress