ARROcase
Anal Canal Carcinoma

Shripal Bhavsar, MD, MBA
SUNY Upstate Medical University
Syracuse, NY
45 year old man with HIV, CD4 70
CC: Anal pain x 6 months, thought they were hemorrhoids
PE: Palpable 2cm rectal mass extending to anorectal ring with fluctuant left–sided gluteal mass and 2 cm palpable L inguinal LN
Biopsy reveals SqCCa and abscess drained.
PET/CT – anal canal mass with associated fistula into left ischioanal fossa, SUV max 12.4, left inguinal nodes SUV 7.2

Stage T2N2, IIIB
PET/CT

- Primary
- Fistula/Abscess
- Palpable Node
Epidemiology

- Anal Cancer accounts for ~ 2.0% of all new cancers diagnosed per year
- 6,230 men and women (2,250 men and 3,980 women) will be diagnosed with and 780 men and women will die of cancer of the anus, anal canal, and anorectum in 2012
- More common in urban populations
- Higher risk in men/women with AIDS, increases risk (RR is from 30 to 60), particularly in CD4 <200
- High-grade intraepithelial lesions are precursors and HPV may be causative
Risk Factors

- HPV 16, 18, 33, 34, 35
- AIDS Diagnosis (Immunosuppression)
- Smoking
- Multiple sexual partners, Receptive Anal Intercourse, history of prior STI
- History of vulvar, vaginal or cervical cancer
Presentation

Symptoms
- Rectal Bleeding (most common)
- Change in bowel habits (constipation or urgency)
- Palpable mass
- Pruritus

Often prolonged time to presentation from symptom onset
- Nearly 33% of patients may prolong telling physician for 6 months\(^5\)
 - Non-specific symptomatology

Symptoms lend to earlier diagnosis
- 73% diagnosed in Stage 0 to II and only 4% in Stage IV\(^4\)
If biopsy reveals Squamous cell carcinoma:
 ◦ DRE
 ◦ Anoscopy
 ◦ Evaluate inguinal lymph nodes
 • FNA or biopsy of suspicious nodes to rule out reactive hyperplasia
 ◦ CXR or Chest CT
 ◦ Abdominal/pelvic CT or MRI
 ◦ Consider HIV testing and CD4 count with patient consent
 • CD4 count <200 have worse outcomes. Start HAART.
 ◦ For Women: pelvic exam to rule out GYN primary
 ◦ Consider PET/CT (can upstage 17% of node-negative patients)
Pathology

- Squamous Cell Carcinoma (most common ~ 85%)
 - Keratinizing – 63%
 - Non-keratinizing – 23%

- Adenocarcinoma (10 – 15%)
 - Can behave more aggressively, worse prognosis

- Melanoma
Anatomy

- 3 – 4 cm long
- Composed of squamous epithelium primarily
- Transitions to rectum at the squamo–columnar junction
- Most HPV cancers occur at SC junction
- Dentate Line important anatomical division, but anorectal ring is important landmark on DRE
Lymphatic Drainage

- **Upper 2/3**
 - Superior Rectal Artery from the IMA
 - LNs drain more to internal iliac, IMA

- Dentate line separates drainage
 - (not a palpable structure)

- **Lower 1/3**
 - Inferior Rectal Artery to Internal Pudendal Artery
 - LNs drain more to superficial inguinal LNs
AJCC 7th ed

Staging – is clinically based (including imaging)

T stage
- T1 – 2cm or less
- T2 – 2–5cm
- T3 – >5cm
- T4 – Invasion into adjacent structures (not including sphincter)

N stage
- N1 – perirectal nodes
- N2 – unilateral internal iliacs or superficial inguinal nodes
- N3 – Bilateral disease, or involvement of both perirectal and inguinal nodes
Note – involvement of common iliac is M1 disease

Overall stage
- Stage I – T1N0
- Stage II – T2 or T3, N0
- Stage IIIA – N1 or T4N0
- Stage IIIB – T4N1 or any N2–N3
- Stage IV – M1

- 50% localized
 - ~ 80% 5–year survival
- 30% with nodal involvement
 - ~ 60% 5–year survival
- 12 – 20% present with distant mets ~
 - 30% 5–year survival
CT Simulation

- If treating with 3D CRT
 - Head-first supine position (can’t boost inguinals with electrons in prone position)
 - Immobilize legs in frog-leg position to minimize skin folds.
 - Marker at anal verge, marker on palpable or biopsy-proven adenopathy.
 - Consider bubble wrap in skin folds for large patient to minimize autobolus effect.

- If treating with IMRT
 - Can position supine as above or prone in select patients,
 - important to choose most reproducible setup
 - (IMRT allows the risk of geographic miss if patient moves.)
 - Place markers similarly.
Planning

- DVH analysis for IMRT (Use max doses for 3DCRT)
 - Critical structures:
 - Small Bowel/Large Bowel (separate structures):
 - <200 cc above 30 Gy, <150 cc above 35 Gy,
 - <20 cc above 45 Gy, None above 50 Gy
 - Femoral Heads/Iliac Crests (separate structures):
 - <5% above 44Gy, <35% above 40Gy, <50% above 30Gy
 - Bladder:
 - <5% above 50Gy, <35% above 40Gy, <50% above 30Gy
 - Genitalia:
 - <5% above 40Gy, <35% above 30Gy, <50% above 20Gy
Conformational Radiation Therapy (3D-CRT)

- 45 Gy in 25 fractions (180 cGy/fraction)
- Initial Field (AP–PA) to 3060 cGy
 - Include anus, perineum, inguinal LNs, pelvis
 - Superior border – L5–S1
 - Inferior border – 2.5 cm below tumor
 - Lateral – inguinal LNs
- Reduced Field (AP–PA) to 4500 cGy
 - Superior border – SI Joints (at 3060 cGy)
 - Lateral – Reduced fields to come off the inguinal LNs (at 3600 cGy)
Treatment (RTOG 0529)

- Radiation Therapy
 - Tumor receives 5400 cGy in 30 fx
 - Uninvolved LNs receives 4500 cGy in 30 fx
 - Involved LN >3cm receives 5400 cGy in 30 fx
 - Involved LN <3cm receives 5040 cGy in 30 fx

- Chemotherapy
 - 5–FU infusions days 1 – 4 and days 29 – 32 (1000mg/m²)
 - Mitomycin C on day 1 and 29 (10mg/m²)
Subjects: T1 – 4, N0 – 3, M0 – M1

Design: Prospective study evaluating DP–IMRT + 5–FU + MMC using RTOG 0529 parameters
- 5–FU infusions days 1 – 4 and days 29 – 32 (1000mg/m²)
- Mitomycin C on day 1 and 29 (10mg/m²)

PTVA – gross tumor volume, perirectal lymph nodes, anal canal with 2.5 cm expansion
Uninvolved nodes – uninvolved inguinal, external iliac and internal iliac
Nodes < or > 3cm – nodes specifically contoured

RTOG Anorectal Contouring Guidelines

<table>
<thead>
<tr>
<th></th>
<th>PTVA</th>
<th>Uninvolved Nodes</th>
<th>Nodes < 3cm</th>
<th>Nodes > 3cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2N0</td>
<td>5040 cGy 180 cGy/fx</td>
<td>4200 cGy 150 cGy/fx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3–4N0</td>
<td>5400 cGy 180 cGy/fx</td>
<td>4500 cGy 150 cGy/fx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2–4N+</td>
<td>5400 cGy 180 cGy/fx</td>
<td>4500 cGy 150 cGy/fx</td>
<td>5040 cGy 180 cGy/fx</td>
<td>5400 cGy 168 cGy/fx</td>
</tr>
</tbody>
</table>
Femoral Heads
Bladder
PTV 5400
PTV 5040
PTV 4500
Dose Color Wash:
- 4500 cGy
- 5040 cGy
- 5400 cGy
We treated the patient using IMRT strictly following the RTOG 0529 protocol and RTOG contouring guidelines.

The patient tolerated treatment well without any moist desquamation at completion and is asymptomatic at 3 weeks out.

Our brave medical oncologists are treating him with full-dose chemo despite his CD4 count.
Historical Context

- The disease was managed surgically until 1970s
 - With APR, requiring removal of sigmoid rectum, rectum, anal canal leaving stoma and requiring permanent colostomy
- Early studies of neoadjuvant chemoradiation followed by surgery revealed high rates of pCR and led to primary chemoradiation
- Optimal parameters for chemoradiation are now under investigation.
Trials

- **Neoadjuvant chemoRT→ Surgery (Wayne State experience)**
 - 28 pts neoadjuvant RT 30 Gy /15fx (tumor+margin, pelvic +inguinal LN) + chemotherapy (5-FU/Mitomycin), followed by surgery 4–6 weeks later → 12 APR, 16 cCR, of APR (7 pCR)
 - Take Home Point: chemoRT is great. Look below.
 - 45 pts T2+ treated as above, initially APR (5/6 pCR), remaining avoided APR if neg Bx at 4–6 weeks. No relapses in biopsy negative patients.
 - Take Home Point: Patients with pCR on biopsy don’t need APR. (84%)

- **Surgery vs RT**
 - Improvements in colostomy–free survival and comparable survival measures.
 - Take Home Point: RT avoids colostomy while maintaining survival.
Randomized Trials

- RT with and without Chemotherapy
 - 110 pts, no T1N0, Arm 1) RT 45/25, if CR/PR -> RT boost 15-20 Gy after 6 weeks or 2) RT 45/25 + CI 5-FU 750 mg/m2 + MMC 15 mg/m2 single bolus
 - LC 50% vs. 68% (SS); CFS 40% vs. 72% (SS); 5-year OS: 56% (NS), no toxicity differences
 - Take Home Point: ChemoRT is superior, standard of care with MMC/5FU
 - 585 pts, no T1N0, Rt 45/20–25 vs same RT + CI 5-FU 1000 mg/m2 + Mitomycin 12 mg/m2 bolus
 - If CR--> boost 15 Gy, NR--> APR. Local Failure primary endpoint.
 - 12 yr: LRC 41% vs 66% SS, CFS 20% vs 30%, OS 27% vs 33%. Majority recur in first 2 years.
 - Take Home Point: ChemoRT is superior, standard of care with MMC/5FU
Randomized Trials

- **Treatment Intensification**
 - 682 pts, Concurrent 5–FU/Mitomycin C vs. Induction/concurrent cisplatin/5–FU
 - Long–term results reveal 5yr DFS, 67.8% v 57.8%, 5yr OS, 78.3% v 70.7%; Both SS.
 - Take Home Point: Concurrent Mitomycin C demonstrates survival benefit over cisplatin. RT/5FU/MMC The Standard
 - UKCCCR ACT II: James R. *A randomized trial of chemoradiation using mitomycin or cisplatin, with or without maintenance cisplatin/5FU in squamous cell carcinoma of the anus (ACT II).* J Clin Oncol 27:18s, 2009 (suppl; abstr LBA4009). Reported ASCO 2009
 - 4 arm trial, 940 pts, 2x2 design for concurrent CDDP vs MMC and 5FU/50.4Gy RT. 2nd rand for obs vs adj CDDP/5FU x 2 cycles
 - No difference in CFS (CR rates ~95%), secondary endpoints or hematologic toxicity.
 - 4 arm trial, 307 pts, 2x2 design for 2 cycles induction cisplatin and 20Gy RT boost.
 - No differences in CFS (80–86%), primary endpoint, or secondary endpoints.
 - Take Home Point: No benefit of CFS for either induction chemo or higher RT dose.
Outcomes

<table>
<thead>
<tr>
<th></th>
<th>RTOG 0529 (2 years)</th>
<th>RTOG 9811 MMC/5–FU (5 year)</th>
<th>RTOG 9811 Cisplatin (5 year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease–Free Survival</td>
<td>95%</td>
<td>~60%</td>
<td>~55%</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>94%</td>
<td>75%</td>
<td>70%</td>
</tr>
<tr>
<td>Colostomy–Free Survival</td>
<td>90%</td>
<td>90%</td>
<td>81%</td>
</tr>
<tr>
<td>Distant Met–Free Survival</td>
<td>92%</td>
<td>85%</td>
<td>81%</td>
</tr>
</tbody>
</table>

Acute Toxicity with dose–painted IMRT

<table>
<thead>
<tr>
<th></th>
<th>Gr 0(%)</th>
<th>Gr 1(%)</th>
<th>Gr 2(%)</th>
<th>Gr 3(%)</th>
<th>Gr 4(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derm</td>
<td>2 (5)</td>
<td>10 (23)</td>
<td>27 (63)</td>
<td>2 (5)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>GI</td>
<td>9 (21)</td>
<td>13 (30)</td>
<td>18 (42)</td>
<td>3 (7)</td>
<td>0</td>
</tr>
<tr>
<td>Heme</td>
<td>4 (9)</td>
<td>4 (9)</td>
<td>9 (21)</td>
<td>21 (49)</td>
<td>5 (12)</td>
</tr>
<tr>
<td>GU</td>
<td>32 (74)</td>
<td>6 (14)</td>
<td>2 (5)</td>
<td>2 (5)</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

NCI CTCAE v3.0

Improved toxicity versus historical controls of RTOG 98–11 with promising outcomes.

DON’T BIOPSY FOR 12 WEEKS, EVEN IF RESIDUAL DISEASE!!! ONLY FOR PROGRESSIVE DISEASE.

There can be continued regression for up to 12 weeks.

Cummings etal JROBP 1991.

An additional 9Gy with 5FU/MMC can be delivered to residual disease for **salvage** prior to APR (RTOG 87–04)
References