Hepatocellular Carcinoma and SBRT

Author: Anna Lee, MD, MPH (PGY-3)
Faculty Advisor: David Schwartz, MD
Institution: SUNY Downstate Medical Center, Dept of Veterans Affairs, New York Harbor Health System
Initial Presentation

• 69M with PMH of HTN, HIV (on HAART), HCV cirrhosis (genotype 1a) who presents with RUQ pain
Labs

- Hepatitis panel
- Direct Bilirubin 0.2, ALT 30, ALP 129
- INR 1.06, PTT 29.9, BUN 11, albumin 4.8, sCr 1.0
- CBC 8.7/13.3/38.9/226
- AFP 1492.9 (H)
 - Gp normally produced during gestation by the fetal liver and yolk sac—does not correlate well with size, stage, or px. Also elevated in gastric cancer and chronic liver disease. >500 concern for HCC
Pre-Tx MRI Abdomen T2

Segment 7 lesion: hypoenhancing
Pre-Tx MRI Abdomen Out of Phase

Segment 7 lesion: no washout
Diagnosis without Biopsy

• A classic appearance on one of the following imaging modalities
 – Ultrasound
 – CT
 – MRI
 – Angiography

• Elevated AFP

• Our patient did not meet imaging criteria so a biopsy was done
Workup

• CT Chest 03/23/2016
 – Negative

• Core Biopsy Hepatic Lobe Lesion 2011
 – Hepatocellular carcinoma, moderately differentiated
Diagnosis

• Multifocal hepatocellular carcinoma (HCC)
Liver Tumor Board

- Cirrhosis: yes
- Etiology of cirrhosis: HCV
- EGD: yes
- Varices: no
- Ascites: no
- Encephalopathy: no
- Portal HTN: no
- Child-Pugh Score: A
- MELD score: 7

Consensus:
Unresectable due to multifocal disease.
Lesion of interest was too large for ablation.
Proceed with TACE -> SBRT
Anatomy
Risk Factors & Epidemiology

• Most common hepatobiliary malignancy
• Develops from liver parenchymal disease
• Males are 3 times more likely to develop than females
• Peaks in the 6th decade of life
Risk Factors & Epidemiology

• Viral infections
 – Chronic HBV is leading cause in Asia (East > SE) and Africa (middle > East > West)
 – HCV is leading cause in Europe, Japan and North America
 – In U.S., retrospective study of patients at liver transplantation centers found 50% with HCV and 15% with HBV
Risk Factors & Epidemiology

• Nonviral infections: alcoholic cirrhosis, inherited errors of metabolism (hereditary hemochromatosis, porphyria cutanea tarda, alpha1-AT deficiency, Wilson’s disease, stage IV primary biliary cirrhosis, environmental exposure to aflatoxin, growing evidence for sequelae of non-alcoholic fatty liver disease (i.e. NASH))

• Common sites of metastasis include lung, abdominal LN, peritoneum and bone
Screening

• AASLD panel recommends periodic screening with ultrasound and AFP testing every 6-12 months for patients at risk for HCC followed by additional imaging (at least a 3-phase CT scan or MRI) for those with rising serum AFP or following identification of a liver mass nodule on ultrasound
Clinical Presentation

• Usually asymptomatic
• Nonspecific symptoms including
 – jaundice, anorexia, weight loss, malaise, upper abdominal pain, hepatomegaly and ascites
Diagnosis: Imaging

• Imaging per NCCN
 – Lesions are classically characterized by intense arterial uptake or enhancement followed by contrast washout or hypointensity in the delayed venous phase
 – Diagnostic studies include 4-phase helical CT, 4-phase dynamic contrast-enhanced MRI or contrast-enhanced ultrasound
 – 4-phase refers to phases of scanning: unenhanced phase, arterial phase, portal venous phase, venous phase after a delay
 – PET-CT is not adequate
LI-RADS

• LI-RADS features that favor HCC Diagnosis
 – Early arterial enhancement with early "washout."
 – Mild-moderate T2 hyperintensity
 – Capsule (rim enhancement on delayed post contrast imaging)
 – Mosaic architecture
 – "Restricted" diffusion
 – Fat deposition disproportionate to that in surrounding liver
 – Iron sparing in iron-overloaded liver
Diagnosis: Biopsy

• Biopsy
 – Not always necessary in the case of liver nodules greater than 1cm in size, the finding of 2 classic enhancements on either one of the recommended imaging modalities (3-phase contrast-enhanced CT or MRI) is sufficient
 – Core needle biopsy (preferred) or FNAB is recommended when 0 or 1 classic arterial enhancement is observed by the recommended imaging method
 – Growing mass with negative biopsy does not rule out HCC
Initial Workup

• Determine etiology of liver disease and assess presence of comorbidity, imaging to detect metastatic disease, evaluation of hepatic function (and whether portal HTN is present)

• Confirm viral load for patients who test positive for HCV antibodies, HBsAg, HBeAb IgG
Initial Workup

• Assessment of Liver Function
 – Serum levels of bilirubin, AST, ALT, ALP, PT, INR, albumin, PLT count, CBC, BUN, sCr (some of these are prognostic factors)
 – Child-Pugh score to assess hepatic functional reserve in patients with cirrhosis
 • Compensated (class A) vs. decompensated (classes B & C)
 – MELD also evaluates hepatic reserve without the clinical assessments of ascites and encephalopathy
Pathology

- 3 morphologic types of HCC:
 - nodular (a/w cirrhosis, characterized by well-circumscribed nodules)
 - massive (a/w noncirrhotic liver)
 - diffuse (many small indistinct tumor nodules throughout the liver)
Staging

• In general, patients are stratified into 4 categories:
 – Potentially resectable or transplantable, operable by performance status or comorbidity
 – Unresectable disease
 – Inoperable by performance status or comorbidity with local disease only
 – Metastatic disease

• 3 other staging systems aside from AJCC are Barcelona Clinic Liver Cancer (BCLC), Cancer of the Liver Italian Program (CLIP), and Japanese Integrated Staging (JIP) score
NCCN Guidelines Summary

- Resect if feasible
- If not: ablation or TACE (SBRT is cat 2B)
 - Reasons patients are poor candidates for surgery/ablation/TACE
 - Poor surgical status, tumors next to major vessels for ablation (heat sink), no accessible vascular path to the tumor
- UNOS criteria for transplant: one tumor <5cm or 2-3 tumors <3cm each, no vascular involvement, N0M0
- Avoid Y90 if bili>2mg/dL or CP class C
Figure 1. Schematic diagram shows the process flow for stereotactic body radiotherapy (SBRT). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
Respiratory Motion Management Techniques

• Motion encompassing methods- 4DCT, multiple breath hold CT, slow CT, fluoroscopy
• Breath hold methods- ABC (active breath holding)
• Direct immobilization- abdominal compression
• Target tracking - internal fiducial markers (recommended), Calypso, cyberknife, dynamic MLC
• Respiratory gating
SBRT

• Prescription
 – 4000cGy to the PTV and 5000cGy to the ITV at 800cGy/fx

• Technique
 – Gated sim with contrast
 – GTV: all visible disease on CT
 – ITV: all visible disease at all parts of breathing cycles
 – PTV: 5-10mm around ITV depending on normal liver volumes left and tolerances
Plan
Plan

<table>
<thead>
<tr>
<th>Structure</th>
<th>Approval Status</th>
<th>Plan</th>
<th>Course</th>
<th>Volume [cm³]</th>
<th>Dose Cover [%]</th>
<th>Stopping Cover [%]</th>
<th>Min Dose [cGy]</th>
<th>Max Dose [cGy]</th>
<th>Mean Dose [cGy]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>157.1</td>
<td>100.0</td>
<td>100.0</td>
<td>3.2</td>
<td>28.5</td>
<td>10.8</td>
</tr>
<tr>
<td>Left Kidney</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>157.1</td>
<td>100.0</td>
<td>100.0</td>
<td>11.5</td>
<td>536.1</td>
<td>48.5</td>
</tr>
<tr>
<td>PTV</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>175.1</td>
<td>100.0</td>
<td>100.0</td>
<td>33.9</td>
<td>574.4</td>
<td>4652.4</td>
</tr>
<tr>
<td>Cord</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>49.5</td>
<td>100.0</td>
<td>100.0</td>
<td>5.4</td>
<td>848.0</td>
<td>191.2</td>
</tr>
<tr>
<td>Cord+5mm</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>140.4</td>
<td>100.0</td>
<td>100.0</td>
<td>4.4</td>
<td>958.0</td>
<td>188.8</td>
</tr>
<tr>
<td>Stomach</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>103.7</td>
<td>100.0</td>
<td>100.0</td>
<td>9.6</td>
<td>336.7</td>
<td>78.3</td>
</tr>
<tr>
<td>Spleen</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>249.6</td>
<td>100.0</td>
<td>100.0</td>
<td>7.3</td>
<td>295.3</td>
<td>93.8</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>68.7</td>
<td>100.0</td>
<td>100.0</td>
<td>9.1</td>
<td>27.7</td>
<td>15.4</td>
</tr>
<tr>
<td>LIVERINVOLVED</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>224.6</td>
<td>100.0</td>
<td>100.0</td>
<td>1.9</td>
<td>5401.2</td>
<td>624.5</td>
</tr>
<tr>
<td>Tr</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>59.6</td>
<td>100.0</td>
<td>100.0</td>
<td>408.2</td>
<td>574.8</td>
<td>5199.8</td>
</tr>
<tr>
<td>Duodenum</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>68.2</td>
<td>100.0</td>
<td>100.0</td>
<td>4.4</td>
<td>20.1</td>
<td>9.5</td>
</tr>
<tr>
<td>Heart</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>591.5</td>
<td>100.0</td>
<td>100.0</td>
<td>55.4</td>
<td>727.5</td>
<td>558.3</td>
</tr>
<tr>
<td>Chestwall</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td>250.1</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>4432.7</td>
<td>1903.9</td>
</tr>
<tr>
<td>Lungs</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiasm</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTV</td>
<td>Approved</td>
<td>LiverSBRT</td>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dose Constraints

<table>
<thead>
<tr>
<th>Organ</th>
<th>Volume</th>
<th>Dose (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duodenum</td>
<td>Max point dose (0.03cc)</td>
<td>≤32</td>
</tr>
<tr>
<td></td>
<td><5cc</td>
<td>≤18</td>
</tr>
<tr>
<td>Small Bowel</td>
<td>Max point dose</td>
<td><35</td>
</tr>
<tr>
<td></td>
<td><5cc</td>
<td>19.5</td>
</tr>
<tr>
<td>Liver Uninvolved</td>
<td>V(liver)-V21</td>
<td>>700cc</td>
</tr>
<tr>
<td></td>
<td>Mean dose</td>
<td><15</td>
</tr>
</tbody>
</table>
Evidence for SBRT

• Traditionally was 50+Gy (2Gy/ fx) with 3D or IMRT

• Tse 2008 at Princess Margaret
 – 41 patients; median 36Gy in 6 fx; median OS 11.7 months

• Rusthoven 2009
 – Definitive alternative for limited disease (1-3 hepatic lesions and max individual tumor diameter < 6cm)
 – 60Gy in 3 fx; 2-yr LC 92%, OS 30%
Evidence for SBRT

• Dawson 2012
 – Phase I study suggests sorafenib increases RT toxicity

• Bujold 2013
 – Definitive alternative for locally advanced disease
 – 102 pts; median 36/6; OS 17 months, LC 87%, grade 3+ toxicity 30%

• Also used for palliation and bridge to transplant
Evidence for post-TACE SBRT

- Retrospective study at University of AL (Jacob et al. 2015)
- 161 patients treated with ≥ 3cm HCC
 - 124 patients TACE alone
 - 37 patients TACE + SBRT
- LR 25.8% TACE vs. 10.8% TACE+SBRT (p=0.04)
- Median OS 20mo TACE vs. 33mo TACE+SBRT (p=0.02)
Current Protocol (RTOG 1112)

• Randomized phase III study of sorafenib vs. SBRT+sorafenib in HCC

• Primary objective
 – To determine if SBRT improves overall survival in HCC patients treated with sorafenib

• Patient Population
 – Unsuitable for resection or transplant or RFA
 – Unsuitable for TACE or refractory to TACE
 – BCLC Intermediate (B) or Advanced (C)
References

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com