ASTRO Refresher Course

Lymphoma

Chris Kelsey, M.D.
Duke University Medical Center
Hodgkin Lymphoma

Classical Hodgkin Lymphoma \((CD15+/CD30+/CD20-)\)

- Early-Stage Favorable
 - Stage I-II without risk factors
- Early-Stage Unfavorable
 - Stage I-II with risk factors
- Advanced
 - Stage III-IV

Nodular Lymphocyte-Predominant Hodgkin Lymphoma \((CD15-/CD30-/CD20+)\)
Hodgkin Lymphoma
Risk Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>GHSG (Eich et al. 2010; Engert et al. 2010)</th>
<th>EORTC (Ferme et al. 2007)</th>
<th>NCI-C (Meyer et al. 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodal sites</td>
<td>≥ 3</td>
<td>≥ 4</td>
<td>≥ 4</td>
</tr>
<tr>
<td>LMA</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>ESR & B-symptoms</td>
<td>≥50, no “B” symptoms, ≥30, “B” symptoms</td>
<td>≥50, no “B” symptoms</td>
<td>ESR ≥50</td>
</tr>
<tr>
<td>Extranodal involvement</td>
<td>Present</td>
<td>Present</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>> 50</td>
<td>≥ 40</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>MC/LD</td>
<td>MC/LD</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hodgkin Lymphoma Risk Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>GHSG (Eich et al. 2010; Engert et al. 2010)</th>
<th>EORTC (Ferme et al. 2007)</th>
<th>NCI-C (Meyer et al. 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodal sites</td>
<td>≥ 3</td>
<td>≥ 4</td>
<td>≥ 4</td>
</tr>
<tr>
<td>LMA</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Extranodal involvement</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Age (years)</td>
<td>> 50</td>
<td>≥ 40</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>MC/LD</td>
<td>MC/LD</td>
<td>MC/LD</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Favorable GHSG

• 1-2 sites of involvement
• No large mediastinal adenopathy
 – < 1/3 transverse diameter of the chest
• No extranodal involvement
• Favorable ESR/B-symptom profile
 – ≥50, no “B” symptoms
 – ≥30, “B” symptoms
Classical Hodgkin Lymphoma
 Early-Stage Disease

- Chemotherapy
- Chemotherapy + RT
Randomized Trials Comparing Chemotherapy versus CMT

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Randomization</th>
<th>Progression-free survival</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meyer (Canada)</td>
<td>276</td>
<td>ABVD X 4-6</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABVD X 2 + RT</td>
<td>94 (12y)</td>
<td>0.006</td>
</tr>
<tr>
<td>Pavlovsky (Argentina)</td>
<td>277</td>
<td>CVPP X 6</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVPP X 6 + RT</td>
<td>71 (7y)</td>
<td>0.01</td>
</tr>
<tr>
<td>Wolden (USA)</td>
<td>501</td>
<td>COPP/ABV X 4-6</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPP/ABV X 4-6 + RT</td>
<td>83 (10y)</td>
<td>0.004</td>
</tr>
<tr>
<td>Picardi (Italy)</td>
<td>160</td>
<td>VEBEP X 6</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEBEP X 6 + RT</td>
<td>96 (5y)</td>
<td>0.03</td>
</tr>
<tr>
<td>Strauss (USA)</td>
<td>152</td>
<td>ABVD X 6</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABVD X 6 + RT</td>
<td>86 (5y)</td>
<td>0.61</td>
</tr>
<tr>
<td>Laskar (India)</td>
<td>179</td>
<td>ABVD X 6</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABVD X 6 + RT</td>
<td>88 (8y)</td>
<td>0.01</td>
</tr>
<tr>
<td>Aviles (Mexico)</td>
<td>201</td>
<td>ABVD X 6</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABVD X 6 + RT</td>
<td>76 (12y)</td>
<td>0.01</td>
</tr>
<tr>
<td>Noordijk (Holland)</td>
<td>783</td>
<td>EBVP X 6</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EBVP X 6 + RT</td>
<td>85-89% (5y)</td>
<td><0.001</td>
</tr>
<tr>
<td>Study</td>
<td>n</td>
<td>Randomization</td>
<td>Progression-free survival</td>
<td>P-value</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Meyer (Canada)</td>
<td>276</td>
<td>ABVD X 4-6</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABVD X 2 + RT</td>
<td>94 (12y)</td>
<td>0.006</td>
</tr>
<tr>
<td>Pavlovsky (Argentina)</td>
<td>277</td>
<td>CVPP X 6</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVPP X 6 + RT</td>
<td>71 (7y)</td>
<td>0.01</td>
</tr>
<tr>
<td>Wolden (USA)</td>
<td>501</td>
<td>COPP/ABV X 4-6</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPP/ABV X 4-6 + RT</td>
<td>83 (10y)</td>
<td>0.004</td>
</tr>
<tr>
<td>Picardi (Italy)</td>
<td>160</td>
<td>VEBEP X 6</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEBEP X 6 + RT</td>
<td>96 (5y)</td>
<td>0.03</td>
</tr>
<tr>
<td>Strauss (USA)</td>
<td>152</td>
<td>ABVD X 6</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABVD X 6 + RT</td>
<td>86 (5y)</td>
<td>0.61</td>
</tr>
<tr>
<td>Laskar (India)</td>
<td>179</td>
<td>ABVD X 6</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABVD X 6 + RT</td>
<td>88 (8y)</td>
<td>0.01</td>
</tr>
<tr>
<td>Aviles (Mexico)</td>
<td>201</td>
<td>ABVD X 6</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABVD X 6 + RT</td>
<td>76 (12y)</td>
<td>0.01</td>
</tr>
<tr>
<td>Noordijk (Holland)</td>
<td>783</td>
<td>EBVP X 6</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EBVP X 6 + RT</td>
<td>85-89% (5y)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
CT + RT vs CT

<table>
<thead>
<tr>
<th>Study</th>
<th>Progression-Free Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noordijk (2005)</td>
<td>85</td>
</tr>
<tr>
<td>Aviles (1998)</td>
<td>75</td>
</tr>
<tr>
<td>Laskar (2004)</td>
<td>80</td>
</tr>
<tr>
<td>Strauss (2004)</td>
<td>82</td>
</tr>
<tr>
<td>Picardi (2007)</td>
<td>90</td>
</tr>
<tr>
<td>Wolden (2012)</td>
<td>85</td>
</tr>
<tr>
<td>Pavlovsky (1988)</td>
<td>70</td>
</tr>
<tr>
<td>Meyer (2012)</td>
<td>90</td>
</tr>
</tbody>
</table>

Legend: CT + RT, CT
Systematic Review
Haematologica 2010;95:494

“Tumor Control”

All trials- HR 0.38 (95% CI 0.28-0.51)
Cochrane Review (2009)
Stage I-II (favorable)

n=1370

ABVD X 4
- IFRT 30 Gy
- IFRT 20 Gy

ABVD X 2
- IFRT 30 Gy
- IFRT 20 Gy

No PET Imaging
HD10
Chemotherapy Comparison

A. Chemotherapy Comparison

Freedom from Treatment Failure (%)

- 4×ABVD (groups 1 and 2)
- 2×ABVD (groups 3 and 4)

Difference at 5 yr, -1.9 percentage points (95% CI, -5.2 to 1.4)
Hazard ratio, 1.17 (95% CI, 0.82 to 1.67)

Overall Survival (%)

- 4×ABVD (groups 1 and 2)
- 2×ABVD (groups 3 and 4)

Difference at 5 yr, -0.5 percentage points (95% CI, -2.6 to 1.6)
Hazard ratio, 1.02 (95% CI, 0.61 to 1.72)

No. of Patients at Risk

- **4×ABVD**
 - Months: 596, 554, 532, 506, 479, 430, 330, 226, 131, 57, 6
 - Months: 594, 555, 530, 498, 473, 410, 314, 225, 131, 54, 9

- **2×ABVD**
 - Months: 596, 583, 575, 569, 562, 541, 471, 348, 227, 130, 24
 - Months: 594, 589, 578, 572, 567, 549, 482, 361, 239, 126, 36
HD10
Radiation Therapy Comparison

B Radiation Therapy Comparison

Freedom from Treatment Failure (%)

- 30 Gy IFRT (groups 1 and 3)
- 20 Gy IFRT (groups 2 and 4)

Difference at 5 yr, −0.5 percentage points (95% CI, −3.6 to 2.6)
Hazard ratio, 1.00 (95% CI, 0.68 to 1.47)

Overall Survival (%)

- 30 Gy IFRT (groups 1 and 3)
- 20 Gy IFRT (groups 2 and 4)

Difference at 5 yr, −0.2 percentage points (95% CI, −2.0 to 1.7)
Hazard ratio, 0.86 (95% CI, 0.49 to 1.53)

No. of Patients at Risk

- **30 Gy IFRT**
 - Months: 575, 553, 526, 499, 471, 426, 328, 235, 139, 61, 8
 - 30 Gy IFRT
 - 20 Gy IFRT

- **20 Gy IFRT**

No. of Patients at Risk

- **30 Gy IFRT**
 - Months: 575, 570, 561, 556, 552, 535, 469, 352, 228, 125, 32
 - 20 Gy IFRT

- **20 Gy IFRT**
 - Months: 588, 583, 575, 568, 560, 539, 468, 346, 232, 131, 28
Favorable GHSG

- 1-2 sites of involvement
- No large mediastinal adenopathy
 - <1/3 diameter of the chest
- No extranodal involvement
- Favorable ESR/B-symptom profile
 - ≥50, no “B” symptoms
 - ≥30, “B” symptoms (*not well represented in HD10*)

2 cycles ABVD + 20 Gy RT
Unfavorable GHSG

- ≥ 3 sites of involvement
- Large mediastinal adenopathy
 - $\rightarrow 1/3$ diameter of the chest
- Unfavorable ESR/B-symptom ratio
- Extranodal involvement
GHSG HD11
JCO 2010;28:4199

Stage I-II
(unfavorable)
n=1395

ABVD X 4

IFRT
30 Gy

BEACOPP X 4
(baseline)

IFRT
20 Gy

IFRT
30 Gy

IFRT
20 Gy

No PET Imaging
• Acute Toxicity
 • WHO grade 3-4 toxicity 74% (BEACOPP) vs 52% (ABVD)
 • WHO grade 3-4 toxicity 12% (30 Gy) vs 6% (20 Gy)

• Outcomes
 – Chemotherapy
 • No difference in any outcomes
 – Radiation therapy
 • BEACOPP: -0.8% (95% CI: 5.8 – 4.2%)
 • ABVD: -4.7% (95% CI: 10.3% - 0.8%)
EORTC-GELA HD-U
ASH 2005 Abstract

• CS I-II HL with risk factors (n=808)

• Randomized to:
 - ABVD X 6 + IFRT (36-40 Gy)
 - ABVD X 4 + IFRT
 - BEACOPP (baseline) X 4 + IFRT

EFS (4) 91%, 87%, 90% (p=0.38)
OS (4) 95%, 94%, 93% (p=0.98)
GHSG HD14
JCO 2012;30:907

Stage I-II (unfavorable)

n=1655

ABVD X 4
RT- 30 Gy

eBEACOPP X 2
ABVD X 2
RT- 30 Gy

Statistics- FFTF primary endpoint
(A) Freedom From Treatment Failure (probability)

5-year FFTP (%)	95% CI (%)
Arm A | 87.7 | 84.8 to 90.6
Arm B | 94.8 | 93.1 to 96.6

P < .001

Time (months)

No. at risk
Arm A | 765 730 709 664 595 505 439 361 288 223 142 94
Arm B | 763 730 702 671 599 523 463 367 297 235 170 111

(B) Overall Survival (probability)

5-year OS (%)	95% CI (%)
Arm A | 96.8 | 95.2 to 98.4
Arm B | 97.2 | 95.8 to 98.6

P = .731

Time (months)

No. at risk
Arm A | 765 764 760 732 676 576 516 420 356 275 204 137 81
Arm B | 763 757 743 723 663 580 518 421 351 273 223 147 91
Unfavorable GHSG

- ≥ 3 sites of involvement
- Large mediastinal adenopathy] – $> \frac{1}{3}$ diameter of the chest
- Unfavorable ESR/B-symptom profile
- Extranodal involvement

- ABVD X 4 + 30 Gy RT
- eBEACOPP/ABVD X 4 + 30 Gy RT
<table>
<thead>
<tr>
<th>Study</th>
<th>PFS (5)</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHSG HD10</td>
<td>91.6%</td>
<td>ABVD X 2 + 20 Gy</td>
</tr>
<tr>
<td>GHSG HD11</td>
<td>87.2%</td>
<td>ABVD X 4 + 30 Gy</td>
</tr>
<tr>
<td>GHSG HD14</td>
<td>95.4%</td>
<td>eBEACOPP/ABVD X 4 + 30 Gy</td>
</tr>
</tbody>
</table>
Radiation Fields

• Involved Field
 – Based on 2D (bony) anatomy
 – Includes entire lymph node region

• Involved Site
 – Based on 3D anatomy (GTV→CTV→PTV)
 – Includes original extent of disease with a margin to account for imaging limitations and disease specifics

• Involved Node
 – Based on 3D anatomy (GTV→CTV→PTV)
 – Includes original extent of disease with margin
Involved Site Radiation Therapy
IJOBP 2013 (in press)

• CTV- original extent of disease based on the pre-chemotherapy PET-CT
 – Adjusted to exclude uninvolved normal tissues
 • lung after chemotherapy-induced shrinkage
 – Expanded to account for imaging uncertainties and disease/treatment circumstances

• PTV- expansion to account for setup variations, organ motion (ITV)

• Logical treatment volumes based on region treated, adjacent normal tissues, dose, etc.
Deauville Criteria

1. No uptake above background
2. Uptake ≤ mediastinal blood pool
3. Uptake > mediastinal blood pool but ≤ liver
4. Uptake moderately increased compared to liver
5. Uptake markedly increased compared to liver
Deauville Criteria

1. No uptake above background
2. Uptake \leq mediastinal blood pool
 NEGATIVE
3. Uptake $>$ mediastinal blood pool but \leq liver
 Negative or Positive (treatment de-escalation)
4. Uptake moderately increased compared to liver
5. Uptake markedly increased compared to liver
 POSITIVE
Advanced Hodgkin Lymphoma

- **Chemotherapy**
 - ABVD X 6 +/- RT
 - eBEACOPP X 6 +/- RT
 - GHSG HD9 (8 cycles eBEACOPP > COPP-ABVD)
 - GHSG HD15 (6 cycles eBEACOPP + PET-directed RT)

- **Role of RT controversial**
 - All sites for limited stage III disease
 - Original sites of bulky disease
 - PET positive site(s) after chemotherapy
Nodular Lymphocyte Predominant HL

NLPHL usually…

• CD20+; CD15- and CD30-
• Presents with early-stage disease (~80%)
• Peripheral adenopathy (central sparing)
• Slow progression (late relapses), perhaps with a tendency to transform to NHLs
• Do relapse, but survive relapses better than patients with classic HL
European Task Force on Lymphoma
JCO 1999;17:776

Hodgkin's-Specific Failure-Free Survival (relapse, death from HL, death from NHL)

Diagnosis
- LRCHD
- 27 / 115
- LPHD
- 54 / 219

p = 0.57

FFS (years) HD-specific
GHSG trials (1988 to 2002)
JCO 2008;26:434

Freedom From Treatment Failure

Probability

FFTTF (months)

LPHL
cHL
Treatment
NLPHL

CS IA, IIA → Observeaa → See Follow-up HODG-15
or ISRTm → Restage

CS IB, IIB → Chemotherapybb ± Rituximab ± ISRTm → Deauville 1-3° → Observe
or
Deauville 4-5° → Observe, if asymptomatic or
Second-line therapy (See HODG-18)
or RTm (if no prior RT)

CS IIIA, IVA → Chemotherapybb ± Rituximab ± RTm → Deauville 1-3° → Observe
or Observation (category 2B) or
Local RT (palliation only)

CS IIIB, IVB → Chemotherapybb ± Rituximab ± RTm → Deauville 4-5° → Observe, if asymptomatic or
Second-line therapy (See HODG-18)
or RTm (if no prior RT)
German Hodgkin Study Group
Annals of Oncology 2005;16:1683

IA without risk factors (n=131)

Log-Rank: p=0.8037
EF-RT: 100%
IF-RT: 92%
CM: 97%
I-IIA without bulky disease (10 cm)
N=88
NLP HL
Radiation Fields
Relapsed Hodgkin Lymphoma
Lancet 2002;359:2065

Figure 3: Freedom from treatment failure for patients with relapsed chemosensitive Hodgkin’s disease

Number of patients
BEAM-HSCT 61 43 34 25 13 8 7 0
Dexa-BEAM 56 27 20 15 10 8 5 1
Hodgkin Lymphoma
Conclusions

- Early-stage favorable (ABVD X 2 + 20 Gy ISRT)
- Early-stage unfavorable (ABVD X 4 + 30 Gy ISRT)
- Advanced disease (ABVD X 6 +/- ISRT)

- Current studies
 - Evaluating interim PET to adapt therapy
 - Escalation- more aggressive chemotherapy
 - De-escalation- elimination of RT; fewer chemotherapy cycles
 - Brentuximab
Non-Hodgkin Lymphoma
Non-Hodgkin Lymphoma

- Diffuse Large B-cell Lymphoma
- Follicular Lymphoma
- Marginal Lymphoma
- Plasmacytoma/Myeloma
- Cutaneous Lymphomas
- NK/T-cell Lymphoma, Nasal Type
DLBCL

Pearls

• ~50% stage I-II; ~50% stage III-IV
 – ~80% stage III-IV in FL

• ~40% have extranodal disease
 – rare in FL (except bone marrow)

• “Double hit” DLBCL- t(14;18) and MYC rearrangements- more aggressive

• Testicular DLBCL- propensity to involve CNS and contralateral testicle (prophylactic RT)

• Primary mediastinal DLBCL- unique entity
The IPI
NEJM 1993;329:987

Age (≤ 60 vs > 60)
LDH (nl vs abnl)
PS (0-1 vs 2-4)
Stage (I-II vs III-IV)
Extranodal dz (0-1 vs >1)

OS (5)
Low (0-1) – 73%
Low intermediate (2) - 51%
High intermediate (3) – 43%
High (4-5) – 26%

R-CHOP- Add ~10%
DLBCL

• Early-Stage Disease
 – Chemotherapy (R-CHOP)
 – Chemotherapy + Radiation Therapy

• Advanced Disease
 – Chemotherapy
 • RT for limited stage III, bulky disease, persistent PET positive disease
GELA (LNH98-5)
NEJM 2002;346:235; JCO 2005;23:4117

Patients (n=399), age 60-80 y/o; Stage II-IV DLBCL

Randomized to:
A. CHOP X 8
B. R-CHOP X 8

Rituximab- Chimeric monoclonal antibody to CD20 (B-cells)
Improved outcomes irregardless of IPI score
ECOG 1484
JCO 2004;22:3032

- Stage I-II diffuse aggressive lymphomas
 - DLBCL 80%
- Bulky stage I, IE, II
 - 68% stage II
 - 31% bulky (>10 cm)
- 8 cycles of CHOP. If CR by CT, then randomized to:
 - Consolidation RT (30 Gy)
 - Observation
- Primary endpoint- disease-free survival (20%)
ECOG 1484
Disease-Free Survival

![Graph showing disease-free survival with CHOP and CHOP + RT groups. The Log-rank two-sided P value is 0.05.]

<table>
<thead>
<tr>
<th>Group</th>
<th>0-2</th>
<th>2-4</th>
<th>4-6</th>
<th>6-8</th>
<th>8-10</th>
<th>10-12</th>
<th>12-14</th>
<th>14-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>24/93</td>
<td>11/69</td>
<td>6/58</td>
<td>2/50</td>
<td>2/45</td>
<td>4/36</td>
<td>2/22</td>
<td>0/8</td>
</tr>
</tbody>
</table>

(# events/# at risk)
ECOG 1484
Overall Survival

Log-rank two-sided $P=.24$

<table>
<thead>
<tr>
<th>Group</th>
<th>0-2</th>
<th>2-4</th>
<th>4-6</th>
<th>6-8</th>
<th>8-10</th>
<th>10-12</th>
<th>12-14</th>
<th>14-16</th>
</tr>
</thead>
</table>

(# events/# at risk)
• Stage I-II intermediate or high-grade NHL
 – 75% DLBCL
• Stage I (67%) or non-bulky stage II
• Randomized to:
 – CHOP X 8
 – CHOP X 3 + RT (40-55 Gy)
• Primary endpoint- not stated
SWOG 8736
Progression-free survival

More toxicity in CHOP X 8

Overall Survival
82% vs 72% (p=0.02)
• Younger patients (< 61 years) with stage I-II aggressive NHL
 – 81% DLBCL

• No risk factors

• Randomized to:
 – 3 cycles of ACVBP + consolidation CT
 – 3 cycles of CHOP + RT (40 Gy)

• Primary endpoint- event-free survival (10%)
Overall survival - 82% vs 74% (p<0.01)
Substantial toxicity.
GELA LNH 93-4
JCO 2007;25:787

• Older patients (> 60 years) with stage I-II aggressive non-Hodgkin lymphoma
 – 80% DLBCL
• No risk factors (bulky disease, elevated LDH, poor performance status)
• 4 cycles of CHOP
• Randomized to:
 – Consolidation RT (40 Gy)
 – Observation
• Primary endpoint event-free survival (10%)
RT markedly delayed and 12% didn’t receive it
Local failure 7% vs 18% (crude rates)
Stage I-II DLBCL
Conclusions

• Consolidation RT decreases risk of relapse at treated sites and overall risk of relapse
 – Local failure- 4-7% (crude)
• 3 cycles of R-CHOP inadequate for most patients
• Older patients, especially those with favorable disease and/or comorbidities, may derive less benefit from RT
Radiation Therapy in the Rituximab and PET Era
Benefit of RT with Rituximab
JCO 2010;28:4170

- MD Anderson retrospective analysis
 - N=327 received 6-8 cycles of R-CHOP and in CR by PET
- Stage I-II (37%) or stage III-IV (63%)
- RT (30-40 Gy) vs no RT
Progression-free Survival

JCO 2010;28:4170

HR (MVI)- 0.32
Overall Survival

JCO 2010;28:4170

HR (MVI) - 0.19
Italy
Leukemia and Lymphoma 2011;52:1867

• Retrospective evaluation of patients from two prospective GISL trials
• Patients (n=182) with DLBCL treated with R-CHOP X 6 +/- RT (physician discretion)
 – RT (n=40)
 – No RT (n=142)
• RT patients younger, more early-stage disease, more bulky disease
A: OS by consolidative IF-RT

Cumulative probability

- RT no
- RT yes

Follow-up, months

HR = 0.34; P = 0.143

B: EFS by consolidative IF-RT

Cumulative probability

- RT no
- RT yes

Follow-up, months

HR = 0.28; P = 0.035
Phase III Trial on RT Dose
Radiotherapy and Oncology 2011;100:86

640 Sites of Aggressive NHL

- 82% DLBCL
- 67% stage I-II
- 73% as post-chemo consolidative RT
- 10% received Rituximab

30 Gy in 15 fractions
40-45 Gy in 20-23 fractions

Courtesy A. Ng
30 Gy vs 40-45 Gy

Median f/u 5.6 yrs:

<table>
<thead>
<tr>
<th></th>
<th>30 Gy (n=319)</th>
<th>40-45 Gy (n=321)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5y FFLP</td>
<td>82%</td>
<td>84%</td>
<td>0.66</td>
</tr>
<tr>
<td>5y OS</td>
<td>64%</td>
<td>68%</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Caveats:
- Included pts treated with RT alone or receiving salvage/palliative RT
- No chemo data, mostly without rituximab
- Lack of functional imaging to determine response to chemo

Courtesy A. Ng
Summary

- Stage I-II DLBCL
 - R-CHOP X 3-6 cycles
 - ISRT (30 Gy) decreases risk of relapse by ~60%

- Stage III-IV DLBCL
 - R-CHOP X 6 +/- ISRT
 - Bulky disease (JCO 2014 epub)
 - Skeletal involvement (JCO 2013;31:4115)
German High-Grade NHL Study Group
JCO 2013;31:4115

• Retrospective evaluation of 9 prospective studies
• RT recommended for extranodal disease (but not mandatory)
• MVA- RT improved EFS (HR 0.3, p=0.001)
RICOVER-60
JCO 2014 (in press)

- Best arm of RICOVER-60
 - R-CHOP-14+2R + RT for bulky or E disease
- Compared with additional amended arm without RT
- Among patients with bulky disease, RT improved outcomes
Primary Mediastinal DLBCL
Pearls

• Clinicopathologic entity
• Arises from thymic B-cells (extranodal site)
• WHO- arises in anterior mediastinum +/- cervical/supraclavicular LNs without disease elsewhere
• M:F ratio- 1:2; Median age 30s
• 70% have bulky disease
• Unique molecular signature
Primary Mediastinal B-cell Lymphoma
Annals of Oncology 2006;17:123

- PMBCL: n=153
 - CHOP-like
 - MACOP-B/VACOP-B
 - R-CHOP
Primary Mediastinal versus DLBC NOS
OS (A) and PFS (B)

A

Cumulative Survival

Overall survival (y)

B

Cumulative Survival

Progression free survival (y)

PMLBCL

DLBCL
DA-EPOCH-R

No Radiation

NEJM 2013;368:1408
Primary Mediastinal DLBCL

Conclusions

- R-CHOP + RT
- DA-EPOCH-R +/- RT
Follicular Lymphoma
Follicular Lymphoma
Role of RT

• Stage I or limited stage II
 – Definitive RT

• Stage III-IV (or extensive stage II)
 – Palliative RT
Localized
LymphoCare Study
JCO 2009;10:1202

- 2004-2007
- n=2728
 - N=474 with stage I
- 265 sites
 - Private- 80%
 - Academic- 20%
Figure 3. Utilization of upfront external beam radiation therapy for localized low-grade follicular lymphoma in the United States is shown by decade.
British Columbia
Cancer 2010;116:3797

1986-2006
N=237
Stage I- 76%
Stage II- 24%

FFTF- 49%
1961-1994; N=177
Stage I - 41%; Stage II 59%

FFTFT - 44%
UK
Br J Cancer 1994;69:1088

N=208
Stage I- 100%
Low-grade NHL

FFTFF- 49%
Stage I Follicular Lymphoma

Dose & Field
• Patients (n=361) with low-grade NHL requiring RT (curative or palliative)
 – 59% FL 72% curative 70% stage I-II
 – 19% MZL 28% palliative

• Randomized to:
 – 40-45 Gy
 – 24 Gy
(a) Freedom from local progression

% of patients without local progression

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1 2 3 4 5 6 7 8 9 10

PATIENTS at Risk
High dose 181 160 150 131 107 79 52 37 23 9 3
Low dose 180 159 147 119 101 83 54 38 24 10 1

Events Totals
High dose 38 181
Low dose 42 180

HR=1.13 95% CI=0.73-1.75
Subset analysis- no difference in subgroup treated with curative intent
British Columbia
Cancer 2010;116:3797

P=0.498

LNs + 0-5 cm margin
Stage I Follicular Lymphoma
Left Axilla

Dose
2 Gy qd to 30 Gy
1973-2004
N=6568
RT- younger, stage I, no extranodal disease

Figure 1. Non-Hodgkin lymphoma-specific survival with or without upfront external beam radiation therapy (RT) is shown. HR indicates hazard ratio.
Figure 2. Overall survival in patients with low-grade, stage I-II follicular lymphoma treated with or without upfront external beam radiation therapy (RT) is shown. HR indicates hazard ratio.
Stage III-IV
Patients (n=630) with symptomatic grade 1-2, stage III-IV FL

Randomized to:
A. CHOP X 6-8
B. R-CHOP
CVP vs R-CVP
JCO 2008;26:4579

- Previously untreated follicular lymphoma
- Stage III-IV
- 8 cycles of CVP vs R-CVP
Study group indolent Lymphomas (StiL)
Lancet 2013;381:1203

- Patients with stage III-IV indolent lymphomas
- Randomized to R-CHOP or B-R
- B-R better tolerated

Median (IQR; months)
- B-R: 69.5 (26.1 to not yet reached)
- R-CHOP: 31.2 (15.2–65.7)

HR 0.58 (95% CI 0.44–0.74)
p<0.0001

Number at risk
<table>
<thead>
<tr>
<th></th>
<th>B-R</th>
<th>R-CHOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>207</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>169</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>9</td>
</tr>
</tbody>
</table>

Figure 2 Progression-free survival B-R=bendamustine plus rituximab. R-CHOP=CHOP plus rituximab.
PRIMA
Lancet 2011;377:42

A

PFS

HR 0.55 (95% CI 0.44-0.68); p<0.0001

Number at risk
Rituximab 505 472 445 423 404 307 207 84 17 0
Observation 513 469 415 367 334 247 161 70 16 0

B

HR 0.60 (95% CI 0.47-0.76); p<0.0001

Number at risk
Rituximab 505 483 455 441 414 312 209 91 17 0
Observation 513 487 452 417 380 286 170 71 18 0

C

HR 0.62 (95% CI 0.47-0.81); p=0.0004

Number at risk
Rituximab 505 484 459 444 428 325 220 93 19 0
Observation 513 492 460 425 393 302 188 75 20 0

D

HR 0.87 (95% CI 0.51-1.47); p=0.60

Number at risk
Rituximab 505 499 492 483 474 365 246 108 22 1
Observation 513 507 501 492 472 381 243 97 26 0
Stage III-IV Follicular Lymphoma Palliation

• Netherlands (JCO 2003;21:2474), n=109
• 52% with disease ≥ 5 cm
• Prior regimens (median 2, range 0-11)
• 2 Gy X 2 or 4 Gy X 1
• ORR 92% (CR 61%, PR 31%, SD 6%)
• 25 months median time to local progression (42 months in patients with CR)
• Well tolerated
Follicular Lymphoma
Conclusions

• Stage I/II
 – RT alone
 – 24-30 Gy
 – ISRT with appropriate CTV expansion (no chemotherapy)
 – Expected outcomes- ~50% 10-year FFP
 – Patterns of failure- distant

• Stage III-IV
 – R-CHOP +/- maintenance R, R-CVP, B-R
 – 2 Gy X 2 excellent palliative option
Marginal Zone Lymphoma
WHO Classification

- Nodal marginal zone lymphoma
- Splenic marginal zone lymphoma
- Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT)
MALT Lymphoma

Pearls

• Locations
 – Stomach
 – Ocular adnexa (conjunctiva, lacrimal gland, retro-orbital space)
 – Salivary glands
 – Thyroid
 – Skin, lung, breast……anywhere

• Presentation- IE, no B-symptoms, very favorable outcomes

• Treatment
 – Antibiotics for *H. pylori* + gastric MALT
 – RT for localized disease elsewhere
Gastric MALT Lymphoma

- *H. pylori* provides the antigenic stimulus for promoting and sustaining lymphoma development
- 90% of cases are *H. pylori* positive
 - Endoscopy & *H. pylori* assessment (H&E/HpSS)
 - t(11;18)- poor response to antibiotics
 - EUS (depth of involvement)
 - CT C/A/P or PET-CT; bone marrow usually -
- Numerous studies show clinical response to *H. pylori* eradication
 - PPI, amoxicillin, clarithromycin
Hp+ Gastric MALT
JCO 2005;23:8018

• Multi-institutional European prospective study
• Patients with IE Hp positive gastric MALT
 – mucosa and submucosa; no LNrs
• Treated with antibiotics and PPI
• EGD monthly until histologic CR, then every 6-12 months
• Failure defined as no change after 2 months or only partial remission after 6 months
Hp+ Gastric MALT
JCO 2005;23:8018

• N=120
• *Hp* eradicated in 116/120 (97%); 4- 2nd line
• CR (*macroscopic and histologic*) achieved in 80% (96/120)
 – 1-28 months; 61% within 3 months, 88% within 12 months
• NR (n=11) or PR (n=13)
 – 8 had DLBCL; 1 had T-cell lymphoma
• Of the 96 who achieved CR…..
EFS 68%

- Death (n=7)
 - 0 from lymphoma

- Relapse
Hp+ Gastric MALT
JCO 2005;23:8018

120 patients with stage I1E Hp-positive gastric MALT lymphoma

Eradication of Helicobacter pylori

CR (n = 96)

PR/NC (n = 24)

Endoscopic-bioptic follow-up

CCR (n = 77)

hRD (n = 16)

Watch and wait

2nd CR (n = 16)

Relapse (n = 3)

2nd-line treatment

2nd-line treatment

2 deaths (DLBCL and T-cell lymphoma)

Duration in CR: Median 32 months (0-101)
Fischbach et al.
Gut 2007;56:1685

Gastric MALT lymphoma stage I
n = 108

Macroscopic CR
Histologic PR

Hp eradication

Minimal residuals
Hp negative after 12 months

CR n = 35 (32%)

Minimal residuals unchanged
n = 67 (62%)

PD n = 6 (6%)

58 months f/u

36 months f/u
Risk Factors
JCO 2005;23:8018

- Ongoing monoclonality (RR 6.3, p=0.0007)
- t(11;18) (RR 3, p=0.004)
 - JCO 2005;23:8018

- Deep invasion of gastric wall

- Involved perigastric lymph nodes
 - Gut 2004;53:34-37
 - Gastroenterology 1997;113:1087
 - Ann Intern Med 1999;131:88-95
 - Gut 2001;48:297
Radiation Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>RT dose</th>
<th>Outcomes</th>
<th>Patterns of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dana Farber</td>
<td>21</td>
<td>30 Gy</td>
<td>LC 21/21</td>
<td>2 patients failed distally</td>
</tr>
<tr>
<td>2 PMH</td>
<td>25</td>
<td>25-30 Gy</td>
<td>LC 15/15</td>
<td></td>
</tr>
<tr>
<td>3 Japan</td>
<td>8</td>
<td>30 Gy</td>
<td>LC 8/8</td>
<td></td>
</tr>
<tr>
<td>4 MSKCC</td>
<td>17</td>
<td>30 Gy</td>
<td>LC 17/17</td>
<td></td>
</tr>
</tbody>
</table>

1 Annals of Oncology 2007;18:672
2 Cancer 2010;116:3815
3 Gastroenterology and Hepatology 2010;25:804
4 JCO 1998;16:1916
IEA H. pylori- Gastric MALT

- Simulation
 - Fasting 3h
 - 4D CT or BH
- Planning-
 3D/IMRT to avoid kidneys, liver, heart
- Dose- 1.5 Gy qd to 30 Gy
- Volume- Stomach with 2 cm margin
- Anti-emetics
IEA Parotid MALT
2 Gy qd to 24 Gy
IEA Conjunctival MALT
2 Gy qd to 24 Gy
Marginal Zone Lymphoma

Summary

• Most patients present with IE disease
• Radiation preferred approach
• RT technique
 – Field- whole organ
 – 24-30 Gy
• LC 95-100%; Survival excellent
• Disease in paired organs (eyes, parotid) tend to have higher relapse rates (distant relapse)
Plasma Cell Dyscrasias

- **MGUS**: Serum or urine M-protein without bone lesions, end-organ damage, and < 10% plasma cells in bone marrow
- **Smoldering myeloma**: >10% BM involvement but no bone lesions or end-organ damage
- **Multiple myeloma**: >10% BM involvement + 1 (M protein, bone lesions, plasmacytoma, organ damage)
- **Solitary Plasmacytoma**: Osseous or extramedullary plasmacytoma, <10% BM involvement, no end organ damage, +/- M protein
Solitary Plasmacytomomas

- Osseous or extraosseous
- Treatment- RT alone
- Dose- 40-45 Gy
- Volume
 - Osseous- Involved lesion + margin
 - Extraosseous- Involved lesion +/- regional LNs (H&N)

Osseous- 70% risk of myeloma
Extra-osseous- 35% risk of myeloma

Fig. 2. Actuarial probability of progression to multiple myeloma according to bone (dotted line) vs. extramedullary (solid line) solitary plasmacytoma in 258 patients ($p = 0.0009$).
Cutaneous Lymphomas

- T-cell (75%)
 - Mycosis fungoides (70%)
 - CD30 positive lymphoproliferative disorders (30%)
 - Lymphomatoid populosis
 - Primary cutaneous anaplastic large cell lymphoma
 - Primary cutaneous peripheral T-cell lymphomas, rare subtypes (1%)
 - Primary cutaneous gamma-delta T-cell lymphoma
 - Primary cutaneous CD8 positive aggressive epidermotropic cytotoxic T-cell lymphoma
 - Primary cutaneous CD4 positive small/medium T-cell lymphoma

- B-cell (25%)
 - Primary cutaneous marginal zone B-cell lymphoma (25%)
 - Primary cutaneous follicle center lymphoma (60%)
 - Primary cutaneous DLBCL, leg type (15%)
Primary Cutaneous B-cell Lymphoma
Dutch Cutaneous Lymphoma Group

Arch Dermatol 2007;143:1520

• N=153 (1985-2005)
• Re-classified according to WHO-EORTC
• All received radiation therapy
 – 20-46 Gy (median 40 Gy)
 – Tumor + 2 cm margin
• CR 99%
Disease-Specific Survival

- PCMZL (n=25)
- PCFCL (n=101)
- PCLBCL, LT (n=27)

Follow-up, mo
Cumulative Survival
Dutch Cutaneous Lymphoma Group
Arch Dermatol 2007;143:1520

Relapse-Free Survival

![Graph showing relapse-free survival rates](image)

- FCL: 72% recurrences cutaneous
- MZL: 80% recurrences cutaneous
- Leg-type: 44% recurrences cutaneous
Italian Study Group for Cutaneous Lymphomas
Zinzani P L et al. JCO 2006;24:1376-1382

• N=467 (1980-2003) from 11 Italian centers
• Pathology reclassified WHO/EORTC
• RT or surgery for single/localized disease
 – 35-45 Gy
 – CR 98% for FCL/MZL and 81% DLBCL, leg type
• Chemotherapy for DLBCL, leg type or disseminated cutaneous involvement
 – CHOP
 – CR 76-86% for FCL/MZL and 80% for DLBCL, leg type
(A) Time-to-progression curve according to the WHO-European Organisation for Research and Treatment of Cancer (EORTC) diagnosis (P = .039); (B) overall survival of all patients; (C) disease-free survival of all patients; (D) overall survival by histology; (E) DFS according to extent of cutaneous disease
Overall survival of primary cutaneous follicle center lymphoma (PCFCL) and primary cutaneous large B-cell lymphoma, leg type (PCLBCL LT) further subdivided by site.
PCBCL
2 Gy qd to 30 Gy (MZL) - 36 Gy (FCC)
CD30+ Lymphoproliferative Disorders
CD30+ Lymphoproliferative Disorders

Lymphomatoid papulosis

- Indolent lymphoproliferative disorder
- Chronic, recurrent, self-healing skin disease
- Disappear within 3-12 weeks
- Typically multifocal
- Histologically indistinguishable from ALCL
- A monoclonal population may be detected
- 20% of patients may develop another malignant lymphoma

Cutaneous ALCL

- Cutaneous lymphoma
- Persistent/progressive entity
- Can spontaneously regress
- Typically solitary or localized group of nodules +/- ulceration
- Regional LNs+ in ~10%
Primary Cutaneous ALCL

RT alone- 40 Gy
Overall Survival

Cumulative Survival (%)

Follow-up (years)

Dutch Cutaneous Lymphoma Group
Blood 2000;95:3653-3661

- Lymphomatoid papulosis (n=118)
- CD30+ LTCL with concurrent skin and draining lymph node involvement (n=11)
- Primary CD30+ LTCL (n=79)
- Secondary CD30+ LTCL (n=11)

ALCL
RT - 99% CR
40% relapsed
90% of relapses cutaneous
CD30+ LP Disorders- Stanford

Disease-Specific Survival

- RT (ALCL)
 - 86% CR
 - 71% long-term control
Nasal NK/T-cell Lymphoma
1314 PTCL and NKTCL cases from 22 institutions

NKTCL- North America (5%), Europe (4%), and Asia (22%)
Patients (n=33) with IE or IIE untreated extranodal NKTCL, nasal type

RT
- 2 Gy qd to 50 Gy (lesion and entire nasal cavity and paranasal sinuses +/- LNs if involved)

Chemotherapy (DeVIC)
- Dexamethasone, etoposide, ifosfamide, carboplatin X 3 cycles
- Dose level 1 (2/3 DeVIC MTD)
Patients treated with 2/3rds DeVIC)
Phase II Trial (Korea)
JCO 2009;27:6027

• Patients (n=30) with IE or IIE extranodal NK/T-cell lymphoma, nasal type

• RT
 – 2 Gy qd to 40 Gy (lesion and margin +/- elective cervical LNs)

• Chemotherapy
 – Concurrent cisplatin (30 mg/m2 IV) with RT
 – Adjuvant etoposide, ifosfamide, cisplatin, dexamethasone X 3 cycles
Phase II Trial (Korea)
JCO 2009;27:6027

A

CHOP then RT

B

Overall Survival

Progression-Free Survival

Time (months)

CCRT + VIPD
Di-CHOP + RT

P = .044

P = .022

Time (months)
NCCN Guidelines Version 1.2014
Extranodal NK/T-Cell Lymphoma, nasal type

STAGE

No risk factors present →
Clinical trial or RT alone
or Concurrent chemoradiation
or Sequential chemoradiation

Presence of ANY risk factor →
Clinical trial or Concurrent chemoradiation
or Sequential chemoradiation

Stage I → Assess risk factors
Stage II
Stage IV

Extranodal → Stage I, II, IV

Risk factors (includes elements of NK/T-cell Lymphoma PI on NKTL-A)

- Age >60 y
- B symptoms
- ECOG PS ≥2
- Elevated LDH
- Regional node involvement
- Local tumor invasion (LTI); bone or skin
- Histologic evidence of high Ki-67 staining
- EBV DNA titer

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)

See Suggested Treatment Regimens (NKTL-B).

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Questions