The management of gynecological cancers

Physics considerations

Gil’ad N. Cohen
Dept of Medical Physics
Memorial Sloan Kettering Cancer Center
New York, NY 10065
Most errors associated with GYN brachytherapy are:

1. Due to poor imaging
 e.g. “I can’t see the catheter...”

2. Dose calculation errors
 e.g. You say mRe, I say mCi.

3. Geometrical errors
 e.g. Treatment of wrong area.

4. Brachytherapy is a simple application in GYN patients with very few errors.
A: Most errors associated with GYN brachytherapy are:

1. Due to poor imaging:
 - usually associated with “relatively” small deviations and geometrical uncertainties

2. Dose calculation errors:
 - these are slowly going away as HDR is becoming a standard modality

3. Geometrical errors:
 - With common use of HDR afterloaders, GYN related medical events listed on the NRC web site are mostly geometric misses.

4. Brachytherapy is a simple application in GYN patients with very few errors.
The challenge:

• involves multiple services

• additional treatments (cervix, interstitial implants)

• added complexity / transition to image guided BT

If it’s not forbidden, it will happen. (p=1)
OBJECTIVES (with focus on brachytherapy):

- Review of commonly used applicators
- Applicator commissioning
- Applicator reconstruction
- Image guided planning
- Briefly mention some EBRT considerations
Intravaginal cylinders/stump applicators

- Critical structures
- Applicator diameter (std dia. 2-4cm)
- Rx line/pt
- Applicator material

- CT based planning can achieve everything atlas or film planning do
- Segmented applicators
- Multi-channel
- Non standard treatments
CT compatible interstitial template kits:
Syed (right), MAC (bottom)
LDR (Cs-137) applicators for Cervix Ca
Utrecht (a) and Vienna (b) applicators: CT and MR compatible

Note:
MR compatible vs MR conditional (latter contains metal components)
Tandem & Ring (Titanium) with smit sleeves

- CT compatible
- MR conditional

- Fixed applicator
- Ring diameter
- Tandem length
Point A definition:
Applied new HDR applicators, remains 2cm from the cap.
Tandem & Ovoids (LDR Cs-137) vs Tandem & Ring (HDR/CT)

- Where is the pear shape distribution
- Simulate T&O loading
- Use of point dose calcs / line optimization
- Use std points: A, B, Cx, Vs, Vd
- But with CT can evaluate DVH of OARs
ABS recommendations:

<table>
<thead>
<tr>
<th>Dose specified to</th>
<th>Radiographs</th>
<th>3D imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point A</td>
<td>$5 \times 5 - 6 \text{ Gy}$</td>
<td>Variable</td>
</tr>
<tr>
<td>D_{90}</td>
<td></td>
<td>$\geq 80 - \leq 90 \text{ Gy EQD2}$</td>
</tr>
<tr>
<td>ICRU point bladder</td>
<td>$5 \times \leq 3.7 \text{ Gy}$</td>
<td></td>
</tr>
<tr>
<td>ICRU point rectum</td>
<td>$5 \times \leq 3.7 \text{ Gy}$</td>
<td></td>
</tr>
<tr>
<td>D_{2cc} bladder</td>
<td></td>
<td>$\leq 90 \text{ Gy EQD2}$</td>
</tr>
<tr>
<td>D_{2cc} rectum</td>
<td></td>
<td>$\leq 75 \text{ Gy EQD2}$</td>
</tr>
<tr>
<td>D_{2cc} sigmoid</td>
<td></td>
<td>$\leq 75 \text{ Gy EQD2}$</td>
</tr>
</tbody>
</table>

EQD2 = normalized therapy dose; 3D = three dimensional.
Why CT planning?

Standard plan with prescription to Pt A

Dose to critical structures: bladder, rectum, RS, bowel.

T&R Titanium version can flex thus close but not fixed geometry.
Independent Plan Check:
This is your time out--Please take the time to do it

• program reads after-loader data file
• automatically determines applicator type
• fixed applicator geometry is built-in along with applicator reference points
 - e.g. Pt A typically within 3%
 - Indicative of deviations in geometry
• facilitate efficient check of interstitial implants (for simple implants can use excel worksheet as well)
• independently calculate dwell positions and point coordinates in order to verify geometry
3D imaging:

What you see is not necessarily what you get
Commissioning of applicators (pre clinical):
• physical measurements; applicator integrity
• imaging: modality, orientation, resolution (slice thickness, FOV)
• source position verification auto-radiographs
• MRI: preferred sequence; metal artifacts. Fusion of CT and MRI
• accounting for slack in curved applicator (Gammamed, Varian)
Challenges w/ reconstruction (CT)

- Applicator template vs. direct tracing
- rendered vs. native image set
- slice thickness ; pixel size
- inhomogeneity correction
MRI compatible Tandem and Ring applicator
Titanium T&O and T&R applicators scanned in phantom

- CT/MR
- ~7mm distortion of tandem tip in superior direction (T2); ~2mm (T1)
- Depends on sequence used. View applicator vs view anatomy.

Yusung et al IJROBP (80) 2011.
GEC-ESTRO Recommendations

Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy

Johannes C.A. Dimopoulosa, Peter Petrowb, Kari Tanderupc, Primoz Petricd, Daniel Bergere, Christian Kirisitse, Erik M. Pedersenc, Erik van Limbergenf, Christine Haie-Mederg, Richard Pöttere,*

a Metropolitan Hospital, Athens, Greece; b Institut Curie, Paris, France; c Aarhus University Hospital, Denmark; d Institute of Oncology Ljubljana, Slovenia; e Comprehensive Cancer Center, Medical University of Vienna, Austria; f Universitaire Ziekenhuis Gasthuisberg Leuven, Belgium; g Institut Gustave Roussy, Villejuif, France
Conventional EBRT field size definition vs IMRT/IMRT with dose painting
REFERENCES:

• ICRU REPORT 38: Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology
REFERENCES:

• Refer to manufacturer IFU and CTBs