Radiation Therapy for Muscle-invasive Bladder Cancer

Prashant Gabani, MSIV; Nicholas G. Zaorsky, MD

Faculty Advisor: Eric M Horwitz, MD

Fox Chase Cancer Center
Philadelphia, PA
Case: Clinical Presentation

- **85-year-old male with a 2 year history of hematuria, no other symptoms (no weight loss; no fatigue)**

- **PMH**
 - Prostate cancer (s/p LDR-BT in 1990), hypertension, hypercholesterolemia, diabetes mellitus

- **Family History**
 - Father and brother with prostate cancer
 - Mother with leukemia
 - Brother with lymphoma

- **Social History**
 - Distant smoking history, stopped 35 years ago
Exam / Diagnostic Workup

• Cystoscopy and TURBT
 – Cystoscopy revealed a mass extending on the right lateral wall of the bladder, to the right ureter
 – Pathology: high grade muscle invasive urothelial carcinoma with invasion into the muscularis propria and presence of lymphovascular invasion: urothelial cell cancer

• MRI Pelvis
 – Diffuse nodular thickening of the bladder wall consistent with bladder carcinoma
 – Tumor extends from the right side of the bladder wall into the right obturator internus muscle and along the right mesial rectal fascia
 – Marked dilatation of the right ureter to the right urethrovesical junction due to obstruction by the bladder tumor leading to right sided hydronephrosis

• CT pelvis
 – Suspicion of right pelvic side wall encroachment from extravesical extension, and likely an enlarging perirectal lymph node, posterior to the right seminal vesicle. The right ureteral obstruction is due to a large right sided bladder mass.
Imaging: T1W MRI, post-Gd
TNM Staging AJCC 7th Edition

- **T stage:**
 - Ta: non invasive papillary
 - Tis: CIS
 - T1: invades subepithelial connective tissue
 - T2a: invades superficial muscularis propria (inner half)
 - T2b: invades deep muscularis propria (outer half)
 - T3a: microscopic invasion of perivesical tissue
 - T3b: macroscopic invasion of perivesical tissue
 - T4a: invades prostatic stroma, uterus, vagina
 - T4b: invades pelvic or abdominal wall

- **N stage:**
 - N1: single LN in true pelvis
 - N2: multiple LNs in true pelvis
 - N3: mets to common iliac LN

- **M stage:**
 - M1: distant mets

Stage Classification

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a</td>
<td>Ta</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>0is</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>T4b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N1-3</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

- **Clinical case:** Urothelial carcinoma of the bladder, Stage III T3bN1M0
Bladder Cancer

• Risk factors- smoking, aromatic amines, nitrites/nitrates, Cytoxan exposure, aniline dyes, *Schistosoma haematobium* infection, chronic indwelling catheter (e.g. in patients with spinal cord injury)
• Transitional Cell Carcinoma
 – 93% of the cases in the United States
• Squamous Cell Carcinoma
 – 5% of the cases in the United States
• Most common sites of the tumor are trigone, lateral and posterior walls, an bladder neck
• Presentation: hematuria, irritative voiding, pelvic pain, obstructive uropathy, hydronephrosis
• Lymphatic Drainage: hypogastric, obturator, internal and external iliac, perivesical, sacral, presacral

West et al, *Urology*, 1999
Work-up: Muscle Invasive Bladder

- History and Physical
- Labs: CBC, CMP including alkaline phosphatase
- Chest imaging
- Imaging of the upper tract collecting system
 - Intravenous pyelogram (IVP), CT urography, renal ultrasound with retrograde pyelogram, ureteroscopy, or MRI urogram
- Abdominal/pelvic CT or MRI
- Exam under anesthesia with cystoscopy
- TURBT
- Bone scan if alkaline phosphatase is elevated or symptoms
Management of Muscle Invasive Disease

• Treatment options:
 – Radical cystectomy (+ neoadjuvant chemo)
 – Partial cystectomy for small tumors in dome with no Tis (+/- neoadjuvant chemo)
 – Bladder preservation therapy
 • ChemoRT
 • Radical RT (if poor surgery/chemo candidate)

• No randomized trials comparing surgery to bladder preservation therapy
 – Surgery is still considered standard of care in the US
Contraindications to Bladder Preservation?

- Hydronephrosis (in this case, the patient had a ureteral stent placed)
- Multifocal CIS
- Incomplete TURBT
- Non-TCC histology
- Poor bladder capacity/function
- Inability to tolerate chemotherapy
Role of Radiotherapy

• In patients with pT3a to pT4a tumors, adjuvant RT has shown to improve 5 year DFS (25% → 49%) and LC (50% → 93%) compared to cystectomy alone (Zaghloul et al.)
 – In a retrospective series, adjuvant RT demonstrated improved cancer specific survival for patients with pT2-pT4a disease (Cozzarini et al.)
• RT alone is inferior to RT combined with chemotherapy in patients undergoing bladder preservation
 – RT with concurrent mitomycin C and 5-FU improved 2 year locoregional disease-free survival from 54% (RT alone) to 67%, and 5-year OS from 35% to 48% (James et al.)
 – RTOG 89-03 compared concurrent cisplatin and RT with vs. without 2 cycles of induction methotrexate, cisplatin, and vinblastine (MCV) (Shipley et al.)
 • No difference in complete clinical response or 5 year OS (49%) was observed
Role of Radiosensitizers

- RT with concurrent cisplatin-based chemotherapy as radiosensitizer is the most common and well-studied chemoradiation method to treat muscle-invasive bladder cancer
- RTOG 8903: patients with clinical stage T2-T4a were treated with concurrent cisplatin, with or without induction MCV chemotherapy (Shipley et al.)
 - 5 year OS was approximately 49% in both arms
- RTOG 9506: patients were treated with twice daily RT and concurrent cisplatin and 5-FU (Kaufman et al.)
 - 3 year OS was 83%
- RTOG 9706: patients were treated with twice daily RT and concurrent cisplatin as well as adjuvant chemotherapy with MCV (Hagan et al.)
 - 3 year OS was 61%
- RTOG 9906: patients were treated with twice-daily RT plus cisplatin and paclitaxel, followed by adjuvant cisplatin and gemcitabine (Kaufman et al.)
 - 5 year OS was 56%
- Currently cisplatin, cisplatin and 5-FU, 5-FU and mitomycin C, and cisplatin and paclitaxel are reasonable bladder-preserving chemo-RT options
Evolution of Combined Modality Treatment & Bladder Preservation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation alone</td>
<td>Radiation + Cisplatin</td>
<td>Neoadjuvant MCV x 2</td>
<td>Radiation (BID) + Cisplatin & 5FU</td>
<td>Radiation (BID) + Cisplatin & Taxol</td>
<td>Radiation + Taxol ± Herceptin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radiation + Cisplatin</td>
<td>Adjuvant MCV x 3</td>
<td>Adjuvant (Cis, Gem, Taxol x 4)</td>
<td>Radiation (BID + Cis &5FU vs. QD+ Gem)</td>
</tr>
<tr>
<td>RTOG 85-12</td>
<td>RTOG 89-03</td>
<td>RTOG 95-06 & 97-06</td>
<td>RTOG 99-06 & 02-33</td>
<td>RTOG 99-06</td>
<td>RTOG 05-24 & 07-12</td>
</tr>
</tbody>
</table>
Radiation Planning

• CT Simulation- supine with immobilization and bladder empty
 – Need CT scan with contrast and consider consulting bladder map from TURBT for planning

• Field design
 – Whole pelvis AP/PA borders: S2-S3, lower pole of obturator foramen, widest bony pelvis margin + 1.5-2 cm
 • Block medial border of femoral heads
 – Whole pelvis lateral borders: 2 cm beyond CTV, same inferior and superior borders as for AP/PA field
 • Block rectum and small bowel
 – Alternative: IMRT to bladder alone

• Treat with empty bladder
Target Volumes

- GTV: macroscopic tumor visible on CT/MRI/cystoscopy
- CTV: GTV + whole bladder +/- lymph nodes (case- and institution-dependent), proximal urethra, prostate + prostatic urethra in men
 - Lymph nodes: obturator, external, and internal iliacs (these were not treated in the current case)
- PTV: CTV + 1.5-2 cm
- Boost volume PTV = GTV + 2 cm

Reference: RTOG 0712, RTOG 0524

Per RTOG 0721
Case treatment

• The patient was treated to 60 Gy in 30 fractions using IMRT.
• CT on rails was used for daily target localization.
• The patient declined chemotherapy.
Dose Volume Histogram

1. PTV BLADDER
2. Lt femoral head
3. Rt femoral head
4. Rectum
5. Small bowel

Total Volume: 156.53 cc
Inclusion: 100%
Minimum Dose: 187.0 cGy
Maximum Dose: 6626.0 cGy
Mean Dose: 3112.0 cGy
Cursor Volume: 8.25%
Plan ID: TUES
Line Type: Solid
Thickness (pixels): 2

Volume %

Dose (cGy)

6000

ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY
Dose Constraints

- Femoral heads:
 - max 45 Gy

- Rectum:
 - V55 < 10%
 - V30 < 50%

- Bowel:
 - 300 cc < 45 Gy

Reference: RTOG 0712, RTOG 0524
Surveillance and Follow-up

- Routine cystoscopy, urine cytology, selective biopsies q3-6 months x 2 yrs
- Labs: LFTs, Cr, electrolytes q6-12 months
- CXR q6-12 months
- Imaging: upper tracts, abdomen, pelvis q3-6 months x 2 yrs
Outcomes

- **Cystectomy alone:**
 - 5 yr OS: T2 60-80%; T3-4 20-40%

- **Bladder preservation with CRT:**
 - 70% have CR after induction CRT
 - 5 yr OS: T2 60%; T3-4 45%

- **Intact bladder after bladder preservation:**
 - At 5 yrs: 45%

Shipley WU et al., Urology 2002; Rodel C et al., J Clin Oncol 2002
Teaching Points

• Radical cystectomy remains the standard of care in muscle-invasive bladder cancer
• Bladder preservation treatment is an acceptable alternative
 – Combined chemoRT superior to RT or TURBT alone for locoregional control (not OS)
 – Neoadjuvant chemo not shown to improve outcomes
• There is no evidence to support the use of adjuvant RT after cystectomy, except in the presence of residual disease
• Salvage cystectomy for incomplete response or invasive recurrence
References

