Public Comment Draft

2 3

6 7 8

9

10

1

Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline

11	Task Force Members' Disclosure Statements
12	All task force members' disclosure statements were reviewed before being invited and were shared with other
13	task force members throughout the guideline's development. Those disclosures are published within this
14	guideline. Where potential conflicts were detected, remedial measures to address them were taken.
15	
16	Disclaimer and Adherence: American Society for Radiation Oncology (ASTRO) guidelines present scientific,
17	health, and safety information and may reflect scientific or medical opinion. They are available to ASTRO
18	members and the public for educational and informational purposes only. Commercial use of any content in
19	this guideline without the prior written consent of ASTRO is strictly prohibited.
20	Adherence to this guideline does not ensure successful treatment in every situation. This guideline
21	should not be deemed inclusive of all proper methods of care or of all factors influencing the treatment
22	decision, nor is it intended to be exclusive of other methods reasonably directed to obtaining the same results
23	The physician must make the ultimate judgment regarding therapy considering all circumstances presented by
24	the patient. ASTRO assumes no liability for the information, conclusions, and findings contained in its
25	guidelines. This guideline cannot be assumed to apply to the use of these interventions performed in the
26	context of clinical trials. This guideline is based on information available at the time the task force conducted
27	its research and discussions on this topic. There may be new developments that are not reflected in this
28	guideline and that may, over time, be a basis for ASTRO to revisit and update the guideline.

30

31

32

Table of Contents

33	Preamble	3
34	1. Introduction	5
35	2. Methods	5
36	2.1. Task Force Composition	5
37	2.2. Document Review and Approval	5
38	2.3. Evidence Review	6
39	2.4. Scope of the Guideline	7
40	3. Key Questions and Recommendations	8
41	3.1. KQ1: Indications for SRS alone for patients with intact brain metastases (Table 3)	8
42	3.2. KQ2: Indications for observation, preoperative SRS, or postoperative SRS WBRT in patients with	
43	resected brain metastases (Table 4)	13
44	3.3. KQ3: Indications for WBRT in patients with intact brain metastases (Table 6)	15
45	3.4. KQ4: Risks of symptomatic radionecrosis with WBRT and/or SRS for patients with brain metastases	
46	(Table 7)	18
47	Figure 1. Limited Brain Metastases	21
48	Figure 2. Extensive Brain Metastases	22
49	4. Conclusions/Future Directions	23
50	5. Acknowledgements	23
51	Appendix 1. Peer Reviewers and Disclosures (Comprehensive)	24
52	Appendix 2. Abbreviations	24
53	References	24
54		

56 **Preamble**

57 As the leading organization in radiation oncology, the American Society for Radiation Oncology (ASTRO) is

- 58 dedicated to improving quality of care and patient outcomes. A cornerstone of this goal is the development
- and dissemination of clinical practice guidelines based on systematic methods to evaluate and classify
- 60 evidence, combined with a focus on patient-centric care and shared decision making. ASTRO develops and
- 61 publishes guidelines without commercial support, and members volunteer their time.
- 62

Disclosure Policy — ASTRO has detailed policies and procedures related to disclosure and management of
 industry relationships to avoid actual, potential, or perceived conflicts of interest. All task force members are
 required to disclose industry relationships and personal interests from 12 months before initiation of the
 writing effort. Disclosures go through a review process with final approval by ASTRO's Conflict of Interest
 Review Committee. For the purposes of full transparency, task force members' comprehensive disclosure
 information is included in this publication. Peer reviewer disclosures are also reviewed and included (<u>Appendix</u>
 The complete disclosure policy for Formal Papers is <u>online</u>.

- 70
- Selection of Task Force Members ASTRO strives to avoid bias by selecting a multidisciplinary group of
 experts with variation in geographic region, gender, ethnicity, race, practice setting, and areas of expertise.
- 72 experts with variation in geographic region, gender, ethnicity, race, practice setting, and areas of expertise 73 Representatives from organizations and professional societies with related interests and expertise are also
- 75 Representatives from organizations and professional societies with related interests and expertise are 74 invited to serve on the task force.
- 75

76 **Methodology** — ASTRO's task force uses evidence-based methodologies to develop guideline

- recommendations in accordance with the National Academy of Medicine standards.^{1,2} The evidence identified
- 78 from key questions (KQs) is assessed using the Population, Intervention, Comparator, Outcome, Timing,
- 79 Setting (PICOTS) framework. A systematic review of the KQs is completed, which includes creation of evidence tables that summarize the evidence base task force members use to formulate recommendations. Table 1
- describes ASTRO's recommendation grading system. See <u>Appendix 2</u> for a list of abbreviations used in the
 guideline.
- 83
- Consensus Development Consensus is evaluated using a modified Delphi approach. Task force members
 confidentially indicate their level of agreement on each recommendation based on a 5-point Likert scale, from
 "strongly agree" to "strongly disagree". A prespecified threshold of ≥75% (≥90% for expert opinion
 recommendations) of raters who select "strongly agree" or "agree" indicates consensus is achieved.
 Recommendation(s) that do not meet this threshold are removed or revised. Recommendations edited in
 response to task force or reviewer comments are resurveyed before submission of the document for approval.
- Annual Evaluation and Updates Guidelines are evaluated annually beginning 2 years after publication for
 new potentially practice-changing studies that could result in a guideline update. In addition, the Guideline
 Subcommittee will commission a replacement or reaffirmation within 5 years of publication.
- 94 95

96 Table 1 ASTRO recommendation grading classification system

ASTRO's recommendations are based on evaluation of multiple factors including the QoE, individual study quality, and panel consensus, all of which inform the strength of recommendation. QoE is based on the body of evidence available for a particular key question and includes consideration of number of studies, study design, adequacy of sample sizes, consistency of findings across studies, and generalizability of samples, settings, and treatments.

Strength of Recommendation	Definition	Overall QoE Grade	Recommendation Wording
Strong	 Benefits clearly outweigh risks and burden, or risks and burden clearly outweigh benefits. All or almost all informed people would make the recommended choice. 	Any (usually high, moderate, or expert opinion)	"Recommend/ Should"
Conditional	 Benefits are finely balanced with risks and burden or appreciable uncertainty exists about the magnitude of benefits and risks. Most informed people would choose the recommended course of action, but a substantial number would not. A shared decision-making approach regarding patient values and preferences is particularly important. 	Any (usually moderate, low, or expert opinion)	"Conditionally Recommend"
Overall QoE Grade	Type/Quality of Study	Evidence Interpretation The true effect is very likely to lie close to the estimate of the effect based on the body of evidence.	
High	• 2 or more well-conducted and highly generalizable RCTs or meta-analyses of such trials.		
Moderate	 1 well-conducted and highly generalizable RCT or a meta-analysis of such trials OR 2 or more RCTs with some weaknesses of procedure or generalizability OR 2 or more strong observational studies with consistent findings. 	The true effect is like estimate of the effect evidence, but it is substantial	ely to be close to the based on the body of possible that it is ly different.
Low	 1 RCT with some weaknesses of procedure or generalizability OR 1 or more RCTs with serious deficiencies of procedure or generalizability or extremely small sample sizes OR 2 or more observational studies with inconsistent findings, small sample sizes, or other problems that potentially confound interpretation of data. 	The true effect may be substantially differen from the estimate of the effect. There is a ris that future research may significantly alter the estimate of the effect size or the interpretation of the results.	
Expert Opinion*	 Consensus of the panel based on clinical judgment and experience, due to absence of evidence or limitations in evidence. 	Strong consensus (≥909 the recommendation evidence to discern the direction of the net eff may better info	6) of the panel guides despite insufficient e true magnitude and ect. Further research orm the topic.

97

Abbreviations: ASTRO = American Society for Radiation Oncology; QoE = quality of evidence; RCTs = randomized controlled trials. 98 *A lower quality of evidence, including expert opinion, does not imply that the recommendation is conditional. Many

99 important clinical questions addressed in guidelines do not lend themselves to clinical trials, but there still may be

100 consensus that the benefits of a treatment or diagnostic test clearly outweigh its risks and burden.

102 **1. Introduction**

103 Brain metastases develop in up to 20% to 40% of cancer patients and can have a significant impact on patient survivorship because of the detrimental effects on neurocognitive function, neurologic symptoms, and 104 survival.^{3,4} This evidence review and guideline updates previous ASTRO guidance³ to reflect recent 105 106 developments in the management of patients with brain metastases, including advanced radiation therapy 107 (RT) techniques such as stereotactic radiosurgery (SRS) and hippocampal avoidance whole brain radiation therapy (HA-WBRT) to reduce side effects of RT; emerging central nervous system (CNS)-active systemic 108 109 therapies such as targeted therapies and immunotherapy as alternatives or adjuncts to RT; and, more detailed tools to estimate patient survival such as the graded prognostic assessment.⁴⁻⁷ Accounting for multiple tumor-110 and patient-related factors requires a patient-centered decision-making process by a multidisciplinary team. 111 112 In 2019, the American Society of Clinical Oncology (ASCO), Society for Neuro-Oncology (SNO), and ASTRO initiated a systematic review to develop a brain metastases guideline to better inform clinical 113 114 practice.(ref when published) In conjunction with this collaborative effort, ASTRO commissioned a task force to 115 formulate and review clinical key questions (KQs) specific to radiation oncology practice. 116

117 **2. Methods**

118 **2.1. Task Force Composition**

The task force consisted of a multidisciplinary team of radiation, medical, and neurosurgical oncologists; a radiation oncology resident; a medical physicist; and a patient representative. This guideline was developed in collaboration with the American Association of Neurological Surgeons/Congress of Neurological Surgeons, ASCO, and SNO, who provided representatives and peer reviewers.

123

124 **2.2. Document Review and Approval**

The guideline was reviewed by 20 official peer reviewers (<u>Appendix 1</u>) and revised accordingly. The modified guideline was posted on the ASTRO website for public comment in September 2021. The final guideline was approved by the ASTRO Board of Directors and endorsed by the TBD.

129 **2.3. Evidence Review**

130 In June 2019, ASTRO submitted a proposal for the Agency for Healthcare Research and Quality (AHRQ) to 131 develop a comparative effectiveness evidence review on RT for brain metastases, which was accepted and funded by the Patient-Centered Outcomes Research Institute (PCORI).^{8,9} This review aimed to support a 132 replacement of the prior ASTRO brain metastases guideline.³ AHRQ performed a systematic search of the 133 134 databases Ovid MEDLINE, EMBASE, Web of Science, Scopus, CINAHL, clinicaltrials.gov, and published guidelines, through July 2020. The inclusion criteria incorporated randomized controlled trials (RCTs) and large 135 136 observational studies (for safety assessments), evaluating WBRT and SRS alone or in combination, as initial or 137 postoperative treatment, with or without systemic therapy for adults with brain metastases due to lung 138 cancer. For KQ1, small cell lung cancer, for which prophylactic cranial irradiation historically was the treatment paradigm, was excluded from the RCTs evaluated.¹⁰ For KQ4 addressing the risks of symptomatic radionecrosis, 139 140 the eligible study design was expanded to also include nonrandomized studies to consider rare adverse events 141 that are difficult to detect in smaller and short-term trials. In total, 97 studies were included for data 142 abstraction. For details on the AHRQ methodology and systematic review explanation, including the Preferred 143 Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram showing the number of articles 144 screened, excluded, and included in the evidence review, see Appendix A of the AHRQ systematic review 145 report.8

146 AHRQ methodology required specific criteria to include studies and perform a comparative effectiveness evidence review. As a result, the AHRQ methodology generated conclusions deemed to be 147 incongruent with clinical practice. As an example, the lack of uniform testing, analysis, and reporting of 148 149 neurocognitive and patient-reported outcomes in prospective clinical trials precluded a comparative 150 effectiveness review of this important endpoint in brain metastasis management. Therefore, in the generation 151 of this guideline, the task force evaluated outcomes (eg, neurocognitive function, quality of life (QoL)) of 152 studies that were part of the systematic review but were excluded by AHRQ's methodology. In addition, the 153 task force extended the literature end date to September 2020 to allow for the inclusion of the HyTEC report 154 on dose-volume tolerances of the brain, given its relevance to KQ4.¹¹ Lastly, because the AHRQ systematic review lacked evidence related to radionecrosis, an additional literature search was performed for KQ4 from 155 156 1998 through September 2020 using the search terms: radiation necrosis, radionecrosis, SRS, stereotactic radiosurgery, fSRS, FSRT, and brain metastases. This resulted in the inclusion of 6 additional studies for review 157 158 with 3 of them ultimately included in the evidence table.

159 The data used by the task force to formulate recommendations are summarized in evidence tables 160 available in the supplementary materials. References selected and published in this document are

- 161 representative and not all-inclusive. Additional ancillary references are included in the text but were not used
- to support the recommendations. The outcomes of interest are listed in <u>Table 2</u>.
- 163

164 **2.4. Scope of the Guideline**

- 165 This guideline covers only the subjects specified in the KQs (<u>Table 2</u>). The scope is limited to the
- 166 radiotherapeutic management of intact (ie, unresected) and resected brain metastases. It provides guidance
- 167 on the reasonable use of modern RT strategies, including single-fraction and fractionated SRS and HA-WBRT,
- 168 and discusses clinical considerations in selecting the optimal RT strategy or in deferring RT in favor of best
- supportive care or close neuro-oncologic surveillance. Outside the scope of this guideline are many other
- 170 important questions that may be subjects of other guidelines, including the appropriate role for CNS-active
- 171 systemic therapies and/or surgical intervention. These topics are discussed extensively in the
- 172 ASCO/SNO/ASTRO Brain Metastases Guidelines (ref-when published).
- 173

174 **Table 2** KQs in Population, Intervention, Comparator, Outcome (PICO) format

KQ	Population	Intervention	Comparator	Outcomes	
1	What are the indications for SRS alone for patients with intact brain metastases?				
	Patients with intact brain metastases	ObservationWBRT	SRS	 Intracranial control Progression-free survival Overall survival Neurocognitive function Patient-reported outcomes 	
2	What are the indications for obserbrain metastases?	rvation, preoperative SRS	s, or postoperative SRS or	WBRT in patients with resected	
	Patients with resected brain metastases	ObservationWBRT	SRS	 Intracranial control Progression-free survival Overall survival Neurocognitive function Patient-reported outcomes 	
3	What are the indications for WBRT for patients with intact brain metastases?				
	Patients with intact brain metastases	ObservationSRS	 Conventional WBRT HA-WBRT HA-WBRT plus memantine 	 Intracranial control Progression-free survival Overall survival Neurocognitive function Patient-reported outcomes 	
4	What are the risks of symptomatic radionecrosis with WBRT and/or SRS for patients with brain metastases?			with brain metastases?	
	Patients with brain metastases	WBRT	SRS	Symptomatic radionecrosisOther adverse effects	

175

Abbreviations: HA-WBRT = hippocampal avoidance whole brain radiation therapy KQ = key questions; SRS = stereotactic

176 radiosurgery; WBRT = whole brain radiation therapy.

3.1. KQ1: Indications for SRS alone for patients with intact brain metastases

179 (Table 3)

181

180 See evidence tables in Supplementary Materials for the data supporting the recommendations for KQ1.

182 What are the indications for SRS alone for patients with intact brain metastases?

183 Table 3 Indications for SRS alone for intact brain metastases

	KQ1 Recommendations Strength of Quality of Evidence Recommendation		Quality of Evidence (Refs)
1.	For patients with an ECOG performance status of 0 to 2 (KPS 70 to 100) and up to 4 intact brain metastases, SRS is recommended.	Strong	High 12-17
2.	For patients with an ECOG performance status of 0 to 2 (KPS 70 to 100) and 5 to 10 intact brain metastases, SRS is conditionally recommended.	Conditional	Low 18-20
3.	 For patients with intact brain metastases measuring <2 cm in diameter, single-fraction SRS with a dose of 2000 to 2400 cGy is recommended. <u>Implementation remarks</u>: Multifraction regimens may be an acceptable option using 2700 cGy in 3 fractions or 3000 cGy in 5 fractions (see KQ4). A lower dose prescription should be considered for adjacent critical structures (eg, brain stem, optic apparatus). 	Strong	Moderate 12,15,18,21,22
4.	 For patients with intact brain metastases measuring ≥2 cm to <3 cm in diameter, single-fraction SRS using 1800 cGy or multifraction SRS is conditionally recommended. <u>Implementation remarks</u>: Multifraction regimens may be an acceptable option using 2700 cGy in 3 fractions or 3000 cGy in 5 fractions (see KQ4). A lower dose prescription should be considered for adjacent critical structures (eg, brain stem, optic apparatus). 	Conditional	Low 22-24
5.	For patients with intact brain metastases measuring ≥3 cm to 4 cm in diameter, multifraction SRS is conditionally recommended. <u>Implementation remarks</u> :	Conditional	Low 23,24

	 Multifraction regimens may be an acceptable 			
	option using 2700 cGy in 3 fractions or 3000 cGy in			
	5 fractions.			
	• 1500 cGy single-fraction SRS may also be used (see			
	KQ4).			
	• Surgery should be considered for tumors exerting			
	mass effect.			
	• A lower dose prescription should be considered for			
	adjacent critical structures (eg, brain stem, optic			
	apparatus).			
6.	For patients with intact brain metastases measuring >4			
	cm in diameter, multifraction radiation therapy is			
	recommended.			
	Implementation remarks:	Strong	Low	
	• Given limited evidence, SRS for tumor size >6 cm is	Strong	18,22-24	
	discouraged.	umors >4 cm		
	• Surgery should be considered for tumors >4 cm			
	and/or exerting mass effect.			
7.	For patients with symptomatic brain metastases who			
	are candidates for local therapy and CNS-active	Strong	Low	
	systemic therapy, upfront local therapy is	Strong	25,26	
	recommended.			
8.	For patients with asymptomatic brain metastases			
	eligible for CNS-active systemic therapy,			
	multidisciplinary and patient-centered decision making			
	is conditionally recommended to determine whether			
	local therapy may be safely deferred.			
	Implementation remark: The decision to defer local	Conditional	Expert Opinion	
	therapy should consider factors such as brain			
	metastasis size, parenchymal brain location, number of			
	metastases, likelihood of response to specific systemic			
	therapy, access to close neuro-oncologic surveillance,			
	and availability of salvage therapies.			

Abbreviations: CNS = central nervous system; ECOG = Eastern Cooperative Oncology Group; KPS = Karnofsky performance
 status; KQ = key question; SRS = stereotactic radiosurgery.

186 Note: Local therapy is defined as brain metastasis-directed radiation therapy and/or surgery.

187

188 Progression of intracranial metastases can lead to neurologic morbidity and death. WBRT remained the

- 189 standard of care for decades, but the development of SRS allowed treatment of limited brain metastases
- alone, often in a single fraction, while largely sparing surrounding brain. Initially, neither the risks of omitting
- 191 treatment of grossly uninvolved brain nor the exact benefits of sparing normal brain were known. Three RCTs

compared SRS alone to SRS plus WBRT,^{17,21,27} and 2 RCTs compared local therapy alone (SRS or surgery) to local 192 therapy plus WBRT.^{12,28} All 5 trials included only patients with 1 to 3 brain metastases (1 trial allowed up to 4) 193 194 and a performance status of Karnofsky performance status (KPS) ≥70 or ECOG 0-2. In aggregate, they 195 demonstrated that while adding WBRT to SRS or surgery improves intracranial control, neither improved 196 survival. Two RCTs found worse performance on the recall portion of the Hopkins Verbal Learning Test Revised at 4 months in their respective WBRT arms,^{17,28} while N0574, the study with the most robust assessment of 197 neurocognition and QoL, found worse neurocognitive deterioration and QoL following SRS plus WBRT 198 compared to SRS alone.²¹ One additional RCT randomized patients with 1 to 3 brain metastases to SRS versus 199 200 WBRT versus SRS plus WBRT.¹³ This study, although limited by its size (n=60), also found better local control 201 and worse neurocognitive deterioration with SRS plus WBRT compared to SRS alone, and no difference in 202 overall survival. As WBRT offers no survival benefit over SRS and worse neurocognitive outcomes, SRS for 203 patients with up to 4 intact brain metastases and reasonable performance status is recommended.

204 Despite the strong evidence supporting the use of SRS for patients with 1 to 4 intact brain metastases, 205 optimal treatment for patients with 5 or more metastases remains controversial because of the lack of 206 published prospectively randomized data in this patient population. A prospective observational study in 207 patients with 1 to 10 brain metastases and cumulative brain metastasis volume of 15 cc or less treated with SRS (JLGK0901) demonstrated noninferiority in the post-SRS survival time in patients with 5 to 10 brain 208 metastases when compared to those with 2 to 4 metastases.¹⁸ Additionally, there was no difference in the 209 210 incidence of neurologic death, deterioration of neurologic function, local recurrence, new lesion appearance, 211 salvage treatment (repeat SRS and WBRT), Mini-Mental State Examination (MMSE) scores, and adverse events 212 observed between these 2 cohorts.¹⁸ Subsequent long-term or subgroup analyses of the trial confirmed longterm validity of these results in terms of the local control,²⁹ MMSE and treatment-related complications,³⁰ as 213 214 well as validation in elderly patients,³¹ and patients with non-small cell lung cancer (NSCLC),³² including those who received EGFR inhibitors.³³ Based on this prospective comparative registry trial, the task force 215 216 conditionally recommends SRS to patients with 5 to 10 intact brain metastases who have a performance status 217 of ECOG 2 or better. Additional evidence to support this recommendation came from a large retrospective 218 study analyzing over 2000 patients from 8 institutions that demonstrated similar overall survival in patients with 2 to 4 versus 5 to 15 brain metastases.¹⁹ Of note, despite the inclusion of patients with 11 to 15 brain 219 220 metastases in this retrospective study, extending the conditional recommendation of SRS to patients with 11 221 to 15 brain metastases is not recommended because only 10 patients in this study had 11 to 15 brain 222 metastases (versus 190 patients with 5-10 brain metastases and 882 patients with 2-4). Furthermore, another 223 large Japanese retrospective study comparing patients with 5 to 15 versus 2 to 4 brain metastases showed a 224 shorter post-SRS survival time in the subgroup with 5 to 15 brain metastases with increased need for salvage

Page 10 of 30

WBRT, raising the possibility that the worse survival in these patients could be driven by the subgroup of
patients with 11 to 15 brain metastases.²⁰ A phase III RCT comparing SRS versus WBRT in patients with 5 to 15
intact brain metastases (*NCT01592968*) has completed, and the final report had not yet been published when
this guideline was developed. In addition, the ongoing trial CCTG CE.7 (*NCT03550391*) compares the
neurocognitive effects of SRS to HA-WBRT plus memantine, which impacts neurocognition less than traditional
WBRT and was not comparatively tested to SRS in these prior trials (see KQ3).

231 While the recommendation of SRS for patients with intact brain metastases is driven largely by the 232 number of brain metastases, it is critical that other tumor- or patient-related factors, such as tumor 233 size/volume, location, total tumor volume, brain metastasis velocity,³⁴⁻³⁶ access to magnetic resonance imaging 234 (MRI) surveillance and subsequent SRS, histology, age, extracranial disease status, molecular profile, systemic 235 treatment options, performance status, prognosis, and baseline neurocognitive function, should be taken into 236 consideration in the patient-centered decision-making process by the multidisciplinary team. In addition, for 237 SRS to be utilized in the treatment of brain metastases which are often small targets, the SRS system must 238 have high-resolution imaging for planning, appropriate immobilization, accurate dosimetry, precise image 239 guidance and localization, and robust quality assurance. Given the higher risk of intracranial relapse because of 240 the emergence of distant brain metastases, for SRS to be utilized in the absence of WBRT requires close 241 radiographic surveillance (eg, Brain MRI every 2-3 months for 1-2 years, then every 4-6 months indefinitely).

242 There are no published prospective randomized trials or prospective controlled comparative studies 243 evaluating clinical outcomes according to SRS dose and fractionation. The Radiation Therapy Oncology Group (RTOG) phase 1 dose escalation study RTOG 90-05 set the standard for single-fraction SRS for intact brain 244 245 metastases ≤ 4 cm in maximum diameter, with the maximum tolerated dose found to be 2400 cGy, 1800 cGy, 246 and 1500 cGy for metastasis of maximum diameter ≤2 cm, 2.1 to 3 cm, and 3.1 to 4 cm, respectively (all patients treated with prior focal or WBRT).³⁷ Subsequently, prospective trials including single-fraction SRS have 247 used doses of 2000 to 2400 cGy for metastases ≤2 cm in diameter or <4 cc volume.^{5,12,18,27} Large retrospective 248 cohort studies have demonstrated excellent local control for tumors ≤2 cm treated with 2400 cGy single-249 250 fraction SRS alone.²² However, metastases ≥2 cm treated with single-fraction SRS doses of 1500 to 1800 cGy 251 have been associated with poor local control.²² For metastases of this size, one study compared 1500 to 1800 252 cGy single-fraction SRS (median size 8.8 cc) with 2700 cGy in 3 fractions SRS (median size 12.5 cc) and 253 demonstrated that multifraction SRS was associated with significantly higher local tumor control and lower rates of radionecrosis.²³ The benefit of multifraction SRS was most pronounced for tumor sizes >3 cm, which 254 255 demonstrated the highest rates of local failure and radionecrosis when treated with single-fraction SRS. 256 Multiple small retrospective cohort series using a variety of dose-fractionation regimens have likewise 257 demonstrated similar or improved rates of local tumor control and reduced incidence of radionecrosis with

Page 11 of 30

multifraction SRS as compared with single-fraction SRS for metastases >2 cm.^{23,38} Based on these data, single-258 259 fraction SRS with a dose of 2000 to 2400 cGy is recommended for metastases <2 cm, either single-fraction or 260 multifraction SRS are conditionally recommended for metastases 2.0 to 2.9 cm, and multifraction SRS for 261 metastases \geq 3 cm to 4 cm in diameter are conditionally recommended. Examples of acceptable multifraction regimens may include 2700 cGy in 3 fractions or 3000 cGy in 5 fractions for intact metastases. Fractionation 262 regimens of 3500 cGy in 5 fractions have been prospectively evaluated as well.³⁹ When different fractionation 263 regimens are considered, a BED₁₀ ≥5000 cGy has been associated with improved local tumor control by a 264 multi-institutional retrospective analysis using a variety of multifraction SRS regimens.²⁴ Metastases with 265 266 maximum diameter ≥ 4 cm have been excluded from prospective studies testing single-fraction SRS, therefore 267 multifraction SRS is recommended for treatment of these large intact lesions that are otherwise not amenable 268 to surgical resection. An upper size limit for metastases eligible for multifraction SRS has not been defined in 269 the literature. Due to limited evidence, SRS for tumor size >6 cm is discouraged.⁴⁰

270 Systemic Therapy

271 There is no randomized evidence to guide the decision for upfront versus delayed RT for patients with brain 272 metastases who are candidates for immunotherapy or CNS-active targeted therapies. Multidisciplinary 273 assessment and patient-centered decision making are essential to optimally select patients in whom local 274 therapy (ie, brain metastasis-directed RT and/or surgery) for brain metastases may be safely and appropriately delayed. In the absence of randomized data, the long-term CNS disease control, neurologic morbidity, 275 276 neurologic mortality, neurocognitive and QoL outcomes following primary systemic therapy (with deferral of 277 local therapy until progression) are unknown. While genomic advancements continue to redefine the patient-278 and disease-subsets for whom CNS-active systemic therapies may be considered in the management of CNS 279 metastases, these guidelines apply to a subset of patients with melanoma, NSCLC, and breast cancer brain 280 metastases, in whom immunotherapy (ie, anti-PD-1 and anti-CTLA4 checkpoint inhibitors) and CNS-active 281 therapies targeting BRAF, EGFR, HER2, ALK and ROS1 have been prospectively assessed. (Refer to the 282 ASCO/SNO/ASTRO Brain Metastases Guidelines for additional information (ref-when publishes)). Decision-283 making for future, yet undefined genomic patient subsets with CNS-active systemic treatment options may similarly employ the principles outlined in these guidelines.^{25,26,41-46} 284

The majority of studies assessing the benefit of primary immunotherapy or CNS-active targeted therapies for brain metastases excluded patients with neurologic symptoms or steroid requirement. For patients with symptomatic brain metastases who are candidates for immunotherapy or CNS-active targeted therapy, based on eligibility and clinical context upfront local therapy (radiation and/or surgery) is recommended because studies of immunotherapy and CNS-active targeted therapy have demonstrated limited response rates and/or limited durability of radiographic stability.^{25,26}

Page 12 of 30

291 Selection of asymptomatic patients for primary immunotherapy or CNS-active targeted therapy and 292 delay of local therapy should incorporate factors including brain metastasis size, location, and number; 293 expected response rates and durability with systemic therapy; access to close neuro-oncologic surveillance; 294 relative pace and burden of extracranial systemic disease; and facilities capable of delivering appropriate local 295 salvage therapies (RT and/or surgery). Among phase II-III studies of systemic therapy with deferred RT with available data, the majority of patients had ≤ 4 brain metastases, and most commonly ≤ 2 lesions of limited size 296 <2 cm.^{25,41,42,44}Additionally, because up to 40% of patients will demonstrate early progression without any 297 response, the eloquence of the involved brain regions (eg, precentral gyrus) and thereby potential for 298 299 symptomatic progression should be carefully considered when deferring local therapy.^{25,41} To facilitate determination of eloquence of involved brain regions, multidisciplinary review of neuro-imaging with neuro-300 301 radiology is encouraged. Single-arm, phase II and randomized phase III trials demonstrate response rates to 302 primary immunotherapy and CNS-active targeted therapies ranging from approximately 30% to 75%, superior 303 to systemic agents with suboptimal CNS activity, but not directly compared to SRS in any randomized 304 trials.^{25,26,41-46} The wide range of CNS response rates with various agents also underscores the lack of criteria for what constitutes a "CNS-active" agent and the absence of accepted thresholds for deferring local therapy in a 305 given setting.⁴⁷ Because a predominant reported failure pattern is local progression in pre-existing brain 306 metastases,^{25,41} many patients who receive upfront systemic therapy will require local therapy,⁴⁸ and 307 308 retrospective studies have suggested benefits to incorporating local therapy with both targeted and immunotherapy agents.⁴⁹ Future prospective studies are needed to assess the optimal combination of local 309 310 therapy with the evolving landscape of systemic therapies to maximize CNS-tumor control and patient survival.

311

312 3.2. KQ2: Indications for observation, preoperative SRS, or postoperative SRS 313 WBRT in patients with resected brain metastases (Table 4)

314 315

316

See evidence tables in Supplementary Materials for the data supporting the recommendations for KQ2.

317 What are the indications for observation, preoperative SRS, or postoperative SRS or WBRT in patients 318 with resected brain metastases?

319

320 **Table 4** Indications for observation, postoperative SRS, WBRT, or preoperative SRS

	KQ2 Recommendations	Strength of Recommendation	Quality of Evidence (Refs)
1.	For patients with resected brain metastases, radiation therapy (SRS or WBRT) is recommended to improve intracranial disease control.	Strong	High 12,50,51

2	For patients with resected brain metastases and limited additional brain metastases, SRS is recommended over WBRT to preserve neurocognitive function and patient-reported QoL.	Strong	Moderate 52
3	For patients whose brain metastasis is planned for resection,	Conditional	Low
	alternative to postoperative SRS.	conditional	53,54

Abbreviations: KQ = key question; SRS = stereotactic radiosurgery; QoL = quality of life; WBRT = whole brain radiation
 therapy.

323

RT is indicated for all patients following resection of brain metastases. Modern prospective series report local 324 recurrence in the resection cavity with surgery alone of at least 50%.^{12,50} Historically, WBRT was routinely used 325 326 following resection; multiple RCTs demonstrated a reduction in risk of local failure, distant intracranial failure, and neurologic death compared to surgery alone.^{12,51,55} Although WBRT is effective in promoting CNS disease 327 328 control, the management of brain metastases has evolved to favor the delivery of focal therapies, where 329 possible, to reduce the risk of neurocognitive toxicities associated with WBRT. As compared to WBRT, focal 330 therapies (such as postoperative SRS or salvage SRS for recurrences in the surgical bed) have been associated with longer neurocognitive deterioration-free survival⁵² and lower overall risk of neurocognitive dysfunction.⁵⁶ 331 332 This has led to the expansion in the use of postoperative SRS.

333 Two prospective trials evaluated the role of single-fraction postoperative SRS to the surgical cavity in 334 patients with limited metastatic disease in the brain. The first evaluated postoperative SRS versus observation and showed a significant improvement in surgical bed control in the SRS group (72% versus 43% at 12 335 months).⁵⁰ The other study randomized patients with resected brain metastases to postoperative SRS versus 336 WBRT.⁵² This trial showed inferior surgical bed control for SRS versus WBRT, but similar overall survival and 337 338 significantly less neurocognitive decline with SRS. Thus, with equivalent survival and reduced neurocognitive toxicity, postoperative SRS has become the preferred treatment modality for appropriately selected patients 339 340 with surgically-resected brain metastases and limited metastatic disease in the brain.

341 The shift from postoperative WBRT to tumor cavity focal therapy has led to the observation of a 342 unique form of local recurrence – nodular meningeal disease. Surgical perturbation of the tumor can lead to the risk of tumor spillage via the cerebrospinal fluid and the development of nodular tumor recurrence outside 343 344 the resection cavity. This nodular meningeal disease has been reported as high as a 1-year Kaplan-Meier estimated risk of 28% in patients treated with postoperative cavity SRS,⁵⁰ and those who develop nodular 345 meningeal recurrence may experience poor survival outcomes with up to three-quarters having a neurologic 346 347 death.^{57,58} Preoperative SRS is under investigation as a potential strategy to mitigate the risk of surgical 348 perturbation failure and resultant nodular meningeal disease. A retrospective comparative analysis of 349 preoperative versus postoperative SRS reported a reduction in nodular meningeal disease from 16.6% (postoperative) to 3.2% (preoperative), in addition to lower rates of radionecrosis.⁵⁹ 350

Page 14 of 30

- Multifraction postoperative SRS is also being investigated (*NCT04114981*) in hopes of improving local control and reducing rates of radionecrosis in comparison to postoperative single-fraction SRS. Data supporting preoperative SRS and multifraction postoperative SRS are currently limited to nonrandomized studies.⁵⁹⁻⁶³ Ongoing and developing trials are evaluating the timing and dose-fractionation regimens for SRS in patients who require surgical resection of brain metastases. Current single-fraction SRS dosing guidance is from a randomized trial of single-fraction postoperative SRS versus WBRT (N107C/CEC.3) and supported by existing literature (<u>Table 5</u>).⁵²
- 358

Table 5. Recommended postoperative cavity single-fraction SRS dosing guidance⁵²

Cavity volume (cc)*	Single-fraction SRS dose (cGy)
<4.2 cc	2000 cGy
≥4.2 to <8.0 cc	1800 cGy
≥8.0 to <14.4 cc	1700 cGy
≥14.4 to <20 cc	1500 cGy
≥20 to <30 cc	1400 cGy
≥30 cc to <5 cm max	1200 cGy

360 *Abbreviation*: SRS = stereotactic radiosurgery

361 *Given the irregular shape of surgical cavities, the total prescribed dose should be based on

the surgical cavity volume with a maximum cross-sectional diameter of <5.0 cm.

363

364 **3.3. KQ3: Indications for WBRT in patients with intact brain metastases (Table**

365 **6)**

366 See evidence tables in Supplementary Materials for the data supporting the recommendations for KQ3 367 and <u>Figure 1</u> and <u>Figure 2</u>.

368

370

369 What are the indications for WBRT in patients with intact brain metastases?

371 **Table 6** Indications for WBRT for intact brain metastases

	KQ3 Recommendations	Strength of Recommendation	Quality of Evidence (Refs)
1. For patients with fa	avorable prognosis and brain metastases		
ineligible for surge	ry and/or SRS, WBRT is recommended as		
primary treatment			
 Implementation re Prognosis shoul metastases pro Recommended Multidisciplinar be used to dete 	<u>marks</u> : d be estimated using a validated brain gnostic index. dose for WBRT is 3000 cGy in 10 fractions. y and patient-centered decision making should rmine whether WBRT may be safely deferred	Strong	High 64-67

	for asymptomatic brain metastases eligible for CNS-active		
2.	For patients with brain metastases and favorable prognosis receiving WBRT, hippocampal avoidance is recommended.		
	 Implementation remarks: Hippocampal avoidance is not appropriate in cases of brain metastases in close proximity to the hippocampi or in cases of leptomeningeal disease. Simultaneous in-field boost of metastases or sequential SRS combined with hippocampal avoidance may be considered. 	Strong	High 4,68-70
3.	For patients with brain metastases and favorable prognosis receiving WBRT or hippocampal avoidance WBRT, addition of memantine is recommended.	Strong	Low 71
4.	For patients with favorable prognosis and limited brain metastases, routine adjuvant WBRT added to SRS is not recommended.		
	 Implementation remarks To maximize intra-cranial control and/or when close imaging surveillance with additional salvage therapy is not feasible, adjuvant WBRT may be offered in addition to SRS. If offered, the recommended dose for adjuvant WBRT is 3000 cGy in 10 fractions. See recommendations 2 and 3 in KQ3 for neuroprotective strategies of hippocampal avoidance and memantine. 	Strong	High 15,16,72
5.	 For patients with brain metastases and poor prognosis, early introduction of palliative care for symptom management and caregiver support are recommended. <u>Implementation remarks</u>: Supportive care only (with omission of WBRT) should be considered. If WBRT is utilized, brief schedules (eg, 5 fractions) are preferred. 	Strong	Moderate 73,74
abbi adia ase ecoi rain	reviations: KQ = key question; SRS = stereotactic radiosurgery (refers to bot ation treatments); WBRT = whole brain radiation therapy; CNS = central ner d upon numerous phase III and other trials evaluating various dose-f mmended as primary treatment for patients ineligible for surgery an n metastases can have variable prognoses, a validated brain metastas	h single- and multi-fra vous system ractionation regime d/or SRS. ^{64,65,75-77} Sir ses prognostic index	ns, WBRT is nce patients with should be used
o es	timate the benefit of WBRT. ^{7,78} Based on a Cochrane analysis and an	alysis of NCCTG N10	07C
Allia	ince]/CEC.3, the recommended dose for WBRT is 3000 cGy in 10 frac	tions noting increas	ed toxicity
ithe	out conferred benefit for higher biological WBRT dose-fractionation	regimens (eg. 3750	cGv in 15

Page 16 of 30

fractions).^{66,67} The identification of molecular drivers of various cancers such as NSCLC, breast cancer and
 melanoma and the development of immune checkpoint inhibitors have changed the therapeutic landscape of
 metastatic cancers. As a result, CNS-active targeted agents and immunotherapy are emerging as an alternative
 to WBRT.⁷⁹

Neurocognitive and physical decline are well-described side effects of WBRT.^{80,81} Many strategies have 385 been tried in an effort to provide neuroprotection or enhancement during and/or after WBRT, including 386 donepezil,⁸² armodafinil,⁸³ methylphenidate,⁸⁴ melatonin,⁸⁵ and memantine.⁷¹ Donepezil administered daily for 387 >6 months after partial or whole brain irradiation demonstrated improved recognition memory, motor speed 388 389 and dexterity, but did not improve the study's overall composite score, and results were not reported separated by primary versus metastatic tumors.⁸² RTOG 0614 randomized patients with brain metastases to 390 391 receive placebo or memantine (starting with WBRT 5-mg morning dose week 1, 5 mg twice a day week 2, morning dose 10 mg and evening dose 5 mg week 3, and 10 mg twice a day weeks 4-24).⁷¹ Among memantine-392 393 treated patients there was a nonsignificant trend towards less decline in delayed recall (the primary endpoint) 394 and significantly longer time to neurocognitive decline as well as superior executive functioning; processing 395 speed and delayed recall. Because memantine is very well tolerated and appears to delay neurocognitive 396 decline in specific domains, use of memantine for patients with good prognosis receiving WBRT or HA-WBRT is recommended, but with a "low" level of evidence given the primary endpoint was not met.⁷¹ 397

398 Since the hippocampus contains neural stem cells responsible for memory function, a reduction of the 399 radiation dose to the hippocampus using HA-WBRT was tested in RTOG 0933, a phase II study as a neuroprotective strategy.⁸⁶ This study demonstrated a reduction in the mean relative decline in performance 400 401 on the Hopkins Verbal Learning Test Revised delayed recall test of 7% at 4 months with HA-WBRT compared 402 with the historical control of 30% with standard WBRT. The use of HA-WBRT was tested in the phase III NRG-403 CC001 trial to compare the efficacy and safety of standard WBRT with that of HA-WBRT, with both arms 404 receiving memantine.⁴ The group receiving HA-WBRT had significantly lower neurocognitive failure (26% 405 relative risk reduction) compared with standard WBRT. For patients with brain metastases in close proximity to 406 the hippocampi or with leptomeningeal disease, hippocampal avoidance may not be appropriate as these were 407 exclusion criteria for RTOG 0933 and NRG-CC001.^{4,86} Simultaneous integrated boost of metastases combined with WBRT with hippocampal avoidance is an emerging strategy designed to maximize intra-cranial control 408 while preserving neurocognitive function.⁶⁸ 409

Patients with limited brain metastases often have surgery and/or SRS for local control of disease.
Because local therapies do not prevent distant intracranial recurrences, combining these approaches with
WBRT has been explored as a method to improve outcomes. Randomized studies have demonstrated that
WBRT added to local therapies (surgery and SRS) increases intracranial control rates, but does not improve
overall survival, although the addition of WBRT to surgery reduces risk of neurologic death.^{15,16,51,72,87} The

Page 17 of 30

addition of WBRT may contribute to neurocognitive decline and decreased QoL, but this question has not been 415 tested with modern neuroprotective strategies of HA-WBRT and memantine.¹⁶ The panel recognizes that not 416 417 all patients have access to the close follow-up imaging (eg, MRI scans every 2-3 months during the first year), SRS, or neurosurgery that is required when using local treatment in lieu of WBRT. Additionally, some patients 418 419 and/or health care providers may prioritize intracranial control, for instance in the setting of multiple recurrent brain metastases and/or high brain metastasis velocity.³⁴⁻³⁶ In these cases, adjuvant WBRT added to SRS may 420 be considered with a recommended dose of 3000 cGy in 10 fractions, but this intervention may incur 421 additional toxicities and its use should be contingent upon the values and preferences of the patient.^{5,67} 422 423 For patients with anticipated poor prognosis, WBRT may not improve outcomes compared to 424 supportive care alone. The QUARTZ non-inferiority trial studied patients with poor prognosis and NSCLC with 425 brain metastases not suitable for resection or SRS. Patients were randomized to WBRT with supportive care versus supportive care alone (oral dexamethasone).⁷³ There was no evidence of a difference in overall survival, 426 427 QoL, or dexamethasone usage between the 2 groups. Estimates of patient prognosis can be derived from the 428 RTOG recursive partitioning analysis classification⁷⁸ or the diagnosis-specific graded prognostic assessment,⁷ 429 which is an alternate validated prognostic score based on histologic cancer subtype and includes components 430 of performance status, age, extra-cranial disease, and number of brain metastases. Reasonable options for 431 patients with poor prognosis and brain metastases include palliative care or hospice, or short-course WBRT (eg, 2000 cGy in 5 fractions) for patients with symptomatic brain metastases.^{73,74,} 432

433

434 3.4. KQ4: Risks of symptomatic radionecrosis with WBRT and/or SRS for 435 patients with brain metastases (Table 7)

436 437

See evidence tables in Supplementary Materials for the data supporting the recommendations for KQ4.

What are the risks of symptomatic radionecrosis with WBRT and/or SRS for patients with brainmetastases?

441

438

442	Table 7	Risks of symptomatic radionecrosis with WBRT and/or SRS	
-----	---------	---	--

	KQ4 Recommendation	Strength of Recommendation	Quality of Evidence (Refs)
1.	For patients with brain metastases, limiting the single-fraction		
	V_{12Gy} to brain tissue (normal brain <i>plus</i> target volumes) to ≤ 10		
	cm ³ is conditionally recommended.		
	Implementation remark: Any brain metastasis with an associated tissue $V_{12Gy} > 10 \text{ cm}^3$ may be considered for fractionated SRS to reduce risk of radionecrosis	Conditional	Low 11,88
	(see KQ1).		

443 *Abbreviations:* KQ = key question; SRS = stereotactic radiosurgery; WBRT = whole brain radiation therapy.

444

Rates of radionecrosis with radiation alone for patients with brain metastases are relatively low, though higher with SRS approaches. Among studies of SRS or fractionated SRS only, reported rates of radionecrosis range from 0 to 20% and 1% to 8%, respectively.^{5,12,13,17,23,56,89-92} For WBRT only, studies suggest a radionecrosis rate of 0 to 1.6%.^{13,56,91} For combinations of SRS and WBRT, radionecrosis rates range from 0 to 5.6%.^{5,12,13,17,93} Since higher rates of radionecrosis are observed with larger brain metastases (>8 cm³ tumor volume), fractionated SRS is conditionally recommended to reduce the rates of radionecrosis in these cases.¹¹

While SRS appears to convey a higher risk of radionecrosis than WBRT, careful planning with attention to dosimetric predictors and dose-volume cut offs to normal brain tissue allow mitigation of this risk. For patients with resected brain metastases, when treating the resection cavity with linear accelerator-based SRS, hot spots in the expansion margin to <110% of the prescription dose may increase the risk of radionecrosis.⁹⁴Additionally, when single-fraction normal tissue constraints for critical structures (eg, optic nerves, optic chiasm, brainstem) cannot be met, WBRT or fractionated SRS may be considered as an alternative to single-fraction SRS.

458 The HyTEC report on brain metastases treated with SRS gives specific dose and volume cut-off recommendations.¹¹ Their analysis suggests that for total irradiated volumes (normal brain plus target 459 460 volumes) of 5 cm³, 10 cm³, and 20 cm³ receiving a single-fraction equivalent dose of 1400 cGy (V_{14Gv}), the risks of grade 3 radionecrosis are approximately 0.4%, 0.8%, and 3.4%, respectively.¹¹ The report found that for 461 462 single-fraction SRS for brain metastases, total irradiated volumes (normal brain plus target volumes) of 5 cm³, 10 cm³, or >15 cm³ receiving 1200 cGy (V_{12Gv}) were associated with risks of symptomatic radionecrosis of 463 approximately 10%, 15%, and 20%, respectively. Thus, the report concludes that the QUANTEC 464 recommendation to limit single-fraction V_{12Gy} to 5 to 10 cm³ remains prudent.⁸⁸ 465

For brain metastases treated with fractionated SRS, the HyTEC analysis found that if the total irradiated volumes (normal brain plus target volumes) receiving 2000 cGy (V_{20Gy}) in 3 fractions or 2400 cGy (V_{24Gy}) in 5 fractions is kept to <20 cm³, then the associated risk of any necrosis or edema is <10%, and risk of radionecrosis requiring resection is <4%.¹¹

For single-fraction SRS, one study⁹⁵ suggested limiting the V_{12Gy} of normal brain (volume of brain, *excluding* the target volume, receiving \geq 1200 cGy) to <8 cm³ and another study⁹⁶ advised to keep the V_{12Gy} total volume (includes brain and target) to <8 cm³ implying that treatment with a V_{12Gy} >8 cm³ may be considered for fractionated SRS. For patients treated with 5-fraction fractionated SRS these studies suggest keeping the V_{30Gy} of normal brain (total brain *minus* target volume) to <10.5 cm³.^{97,98}

475	While reports are limited and quality of evidence is mixed, there may be combinations of certain
476	systemic therapy agents (TKIs, T-DM1) and SRS which are associated with a higher risk of radionecrosis (30%-
477	40%) than those reported with SRS alone. ^{92,99} With respect to combinations of immune checkpoint inhibition
478	with SRS, reports are also mixed, some showing a higher incidence of radionecrosis with combination
479	therapy. ¹⁰⁰⁻¹⁰² However, there are also several reports showing that the incidence of radionecrosis is low with
480	combination of immune checkpoint inhibition and SRS ¹⁰³⁻¹⁰⁵ and similar to rates reported for SRS alone. ¹⁰⁶ This
481	continues to be an area of active investigation, and caution is advised in combining SRS with systemic therapy
482	and immunotherapy, with close attention to radiation planning parameters previously discussed.
483	Figure 1 and Figure 2 are treatment algorithms based on the recommendations from all KQs.

484 **Figure 1. Limited Brain Metastases**

- 485
- Abbreviations: CNS = central nervous system; ECOG = Eastern Cooperative Oncology Group; fx = fraction; HA-WBRT =
 hippocampal avoidance whole brain radiation therapy; LMD = leptomeningeal disease; met = metastases; SIB =
- 488 simultaneous in-field boost; SRS = stereotactic radiosurgery; WBRT = whole brain radiation therapy.
- 489 * For patients with *asymptomatic* brain metastases eligible for CNS-active systemic therapy, multidisciplinary and patient-
- 490 centered decision making is conditionally recommended to determine whether local therapy may be safely deferred.
- 491 + Hippocampal avoidance is not recommended if brain metastases are in close proximity to hippocampi or if LMD. In
- 492 certain situations, SIB or sequential SRS combined with HA-WBRT plus memantine may be considered.
- 493 **‡** Preoperative SRS is conditionally recommended as an alternative to postoperative SRS.
- 494 §While outside the scope of the guideline's evidence review, SRS is a reasonable option based on the expert opinion of 495 the task force.

496 **Figure 2. Extensive Brain Metastases**

- 498 Abbreviations: CNS = central nervous system; ECOG = Eastern Cooperative Oncology Group; fx = fraction; HA-WBRT =
- hippocampal avoidance whole brain radiation therapy; LMD = leptomeningeal disease; met = metastases; SIB =
- 500 simultaneous in-field boost; SRS = stereotactic radiosurgery; WBRT = whole brain radiation therapy.
- 501 * For patients with *asymptomatic* brain metastases eligible for CNS-active systemic therapy, multidisciplinary and patient-
- 502 centered decision making is conditionally recommended to determine whether local therapy may be safely deferred.
- 503 + Hippocampal avoidance is not recommended if brain metastases are in close proximity to hippocampi or if LMD. In
- 504 certain situations, SIB or sequential SRS combined with HA-WBRT plus memantine may be considered.
- 505 **‡** Preoperative SRS is conditionally recommended as an alternative to postoperative SRS.
- 506

9.7.21

507 **4. Conclusions/Future Directions**

508 In the decade since the previous ASTRO brain metastases guideline,³ there has been a tremendous evolution in the management of this patient population. Novel RT techniques such as HA-WBRT have been developed 509 which improve the therapeutic ratio, SRS has a more predominate role, and newer systemic agents have 510 demonstrated unprecedented CNS activity. Treatment and management decisions (Figure 1 and Figure 2) 511 depend on multiple factors (eg, number of brain metastases, brain metastasis size, and performance status). 512 513 Many treatment decisions require multidisciplinary input, especially decisions to defer focal therapy (eg, SRS, 514 surgery) for salvage, noting the numerous clinical trials that have established the safety and effectiveness of 515 focal therapy for brain metastases. As these significant advances in brain metastasis management have been 516 driven by clinical trials, there is an ongoing need for development of inclusive clinical trials with broader 517 eligibility criteria when appropriate, that assess different modalities (eg, RT, imaging, systemic therapy, surgical intervention, and their interactions), and incorporate clinically meaningful trial endpoints such as survival, 518 519 cognitive outcomes, and QoL. Finally, clinicians are encouraged to offer clinical trial participation where 520 appropriate and available.

521

522 **5. Acknowledgements**

- 523 We are grateful to the AHRQ evidence-based practice center who performed the systematic review of the 524 evidence and to the PCORI for funding the systematic review. The task force also appreciates the data 525 abstraction assistance provided by Madeera Kathpal, DO, and Amber Retzlaff, MD.
- 526 The task force thanks the peer reviewers for their comments and time spent reviewing the guideline. 527 See <u>Appendix 1</u> for their names and disclosures.

529 Appendix 1. Peer Reviewers and Disclosures (Comprehensive)

530 Added prior to publication

531 Appendix 2. Abbreviations

- 532 AHRQ = Agency for Healthcare Research and Quality
- 533 BED = biological effective dose
- 534 cGy = centigray
- 535 CNS = central nervous system
- 536 ECOG = Eastern Cooperative Oncology Group
- 537 HA-WBRT = hippocampal avoidance whole brain radiation therapy
- 538 KPS = Karnofsky performance status
- 539 KQ = key question
- 540 MMSE = Mini-Mental State Examination
- 541 MRI = magnetic resonance imaging
- 542 NSCLC = non-small cell lung cancer
- 543 PCORI = Patient-Centered Outcomes Research Institute
- 544 PICOTS = Population, Intervention, Comparator, Outcome, Timing, Setting framework
- 545 QoL = quality of life
- 546 RCT = randomized controlled trial
- 547 RT = radiation therapy
- 548 RTOG = Radiation Therapy Oncology Group
- 549 SRS = stereotactic radiosurgery
- 550 WBRT = whole brain radiation therapy
- 551

552 **References**

- Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. Clinical Practice
 Guidelines We Can Trust. In: Washington, DC National Academies Press; 2011.
- Committee on Standards for Systematic Reviews of Comparative Effectiveness Research. Finding What
 Works in Health Care: Standards for Systematic Reviews. In. Washington, DC: National Academies
 Press; 2011.
- 5583.Tsao MN, Rades D, Wirth A, et al. Radiotherapeutic and surgical management for newly diagnosed559brain metastasis(es): An American Society for Radiation Oncology evidence-based guideline. Practical560radiation oncology. 2012;2(3):210-225.
- Brown PD, Gondi V, Pugh S, et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus
 Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. *J Clin Oncol.* 2020:JC01902767.
- Brown PD, Jaeckle K, Ballman KV, et al. Effect of Radiosurgery Alone vs Radiosurgery With Whole Brain
 Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases: A Randomized
 Clinical Trial. JAMA. 2016;316(4):401-409.
- 5676.Peters S, Camidge DR, Shaw AT, et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-568Cell Lung Cancer. The New England journal of medicine. 2017;377(9):829-838.

569 570 571	7.	Sperduto PW, Kased N, Roberge D, et al. Summary Report on the Graded Prognostic Assessment: An Accurate and Facile Diagnosis-Specific Tool to Estimate Survival for Patients With Brain Metastases. <i>Journal of Clinical Oncology</i> . 2012;30(4):419-425.
572 573 574 575	8.	Garsa A JJ, Baxi S, Chen C, Akinniranye O, Hall O, Larkin J, Motala A, Newberry S, and Hempel S. Radiation Therapy for Brain Metastases. Comparative Effectiveness Review No. 242. Agency for Healthcare Research and Quality <u>https://effectivehealthcare.ahrq.gov/products/radiation-therapy-</u> <u>brain-metastases/research</u> . Published 2021. Accessed June 22, 2021.
576 577 578	9.	Garsa A JJ, Baxi S, Chen C, Akinniranye O, Hall O, Larkin J, Motala A, Newberry S, and Hempel S. Radiation Therapy for Brain Metastases: A Systematic Review. <i>Practical radiation oncology</i> . 2021;IN PRESS.
579 580	10.	Simone CB, 2nd, Bogart JA, Cabrera AR, et al. Radiation Therapy for Small Cell Lung Cancer: An ASTRO Clinical Practice Guideline. <i>Practical radiation oncology</i> . 2020;10(3):158-173.
581 582	11.	Milano MT, Grimm J, Niemierko A, et al. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. <i>Int J Radiat Oncol Biol Phys.</i> 2020.
583 584 585	12.	Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. <i>J Clin Oncol</i> . 2011:29(2):134-141.
586 587 588	13.	El Gantery MM, Abd El Baky HM, El Hossieny HA, Mahmoud M, Youssef O. Management of brain metastases with stereotactic radiosurgery alone versus whole brain irradiation alone versus both. <i>Radiation oncology (London, England).</i> 2014;9:116.
589 590	14.	Lo SN, Hong AM, Haydu LE, et al. Whole brain radiotherapy (WBRT) after local treatment of brain metastases in melanoma patients: Statistical Analysis Plan. <i>Trials.</i> 2019;20(1).
591 592 593	15.	Aoyama H, Tago M, Shirato H. Stereotactic Radiosurgery With or Without Whole-Brain Radiotherapy for Brain Metastases: Secondary Analysis of the JROSG 99-1 Randomized Clinical Trial. <i>JAMA Oncol.</i> 2015;1(4):457-464
594 595 596 597	16.	Churilla TM, Ballman KV, Brown PD, et al. Stereotactic Radiosurgery With or Without Whole-Brain Radiation Therapy for Limited Brain Metastases: A Secondary Analysis of the North Central Cancer Treatment Group N0574 (Alliance) Randomized Controlled Trial. <i>Int J Radiat Oncol Biol Phys.</i> 2017;99(5):1173-1178.
598 599 600	17.	Chang EL, Wefel JS, Hess KR, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. <i>Lancet Oncol.</i> 2009;10(11):1037-1044.
601 602 603	18.	Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. <i>Lancet Oncol.</i> 2014;15(4):387-395.
604 605	19.	Hughes RT, Masters AH, McTyre ER, et al. Initial SRS for Patients With 5 to 15 Brain Metastases: Results of a Multi-Institutional Experience. <i>Int J Radiat Oncol Biol Phys.</i> 2019;104(5):1091-1098.
606 607 608	20.	Yamamoto M, Sato Y, Higuchi Y, Kasuya H, Barfod BE. A Cohort Study of Stereotactic Radiosurgery Results for Patients With 5 to 15 Versus 2 to 4 Brain Metastatic Tumors. <i>Advances in radiation</i> <i>oncology</i> . 2020;5(3):358-368.
609 610 611	21.	Brown PD, Jaeckle K, Ballman KV, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases a randomized clinical trial. <i>JAMA - Journal of the American Medical Association</i> . 2016;316(4):401-409.
612 613	22.	Vogelbaum MA, Angelov L, Lee SY, Li L, Barnett GH, Suh JH. Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. <i>J Neurosurg.</i> 2006;104(6):907-912.
614 615 616	23.	Minniti G, Scaringi C, Paolini S, et al. Single-Fraction Versus Multifraction (3 x 9 Gy) Stereotactic Radiosurgery for Large (>2 cm) Brain Metastases: A Comparative Analysis of Local Control and Risk of Radiation-Induced Brain Necrosis. <i>Int J Radiat Oncol Biol Phys.</i> 2016;95(4):1142-1148.

617 618 619	24.	Remick JS, Kowalski E, Khairnar R, et al. A multi-center analysis of single-fraction versus hypofractionated stereotactic radiosurgery for the treatment of brain metastasis. <i>Radiation oncology</i> (London, England), 2020:15(1):128.
620 621 622	25.	Long GV, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. <i>Lancet Oncol.</i> 2018;19(5):672-681.
623 624 625	26.	Davies MA, Saiag P, Robert C, et al. Dabrafenib plus trametinib in patients with BRAF(V600)-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. <i>Lancet Oncol.</i> 2017;18(7):863-873.
626 627 628	27.	Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. <i>JAMA</i> . 2006;295(21):2483-2491.
629 630 631	28.	Hong AM, Fogarty GB, Dolven-Jacobsen K, et al. Adjuvant Whole-Brain Radiation Therapy Compared With Observation After Local Treatment of Melanoma Brain Metastases: A Multicenter, Randomized Phase III Trial. <i>J Clin Oncol.</i> 2019:37(33):3132-3141.
632 633 634	29.	Serizawa T, Yamamoto M, Higuchi Y, et al. Local tumor progression treated with Gamma Knife radiosurgery: differences between patients with 2-4 versus 5-10 brain metastases based on an update of a multi-institutional prospective observational study (II GK0901) <i>LNeurosurg</i> 2019:1-10
635 636 637	30.	Yamamoto M, Serizawa T, Higuchi Y, et al. A Multi-institutional Prospective Observational Study of Stereotactic Radiosurgery for Patients With Multiple Brain Metastases (JLGK0901 Study Update): Irradiation-related Complications and Long-term Maintenance of Mini-Mental State Examination
638 639	31.	Scores. International Journal of Radiation Oncology Biology Physics. 2017;99(1):31-40. Higuchi Y, Yamamoto M, Serizawa T, et al. Stereotactic radiosurgery in elderly patients with brain
641 642	32.	observational study (JLGK0901-Elderly). <i>Journal of Neuro-Oncology</i> . 2019;144(2):393-402. Shuto T, Akabane A, Yamamoto M, et al. Multiinstitutional prospective observational study of
643 644 645	33.	stereotactic radiosurgery for patients with multiple brain metastases from non-small cell lung cancer (JLGK0901 study-NSCLC). <i>J Neurosurg</i> . 2018;129(Suppl1):86-94. Yomo S. Serizawa T. Yamamoto M. et al. The impact of EGFR-TKI use on clinical outcomes of lung
646 647 648		adenocarcinoma patients with brain metastases after Gamma Knife radiosurgery: a propensity score- matched analysis based on extended JLGK0901 dataset (JLGK0901-EGFR-TKI). <i>J Neurooncol.</i> 2019;145(1):151-157.
649 650 651	34.	Farris M, McTyre ER, Cramer CK, et al. Brain Metastasis Velocity: A Novel Prognostic Metric Predictive of Overall Survival and Freedom From Whole-Brain Radiation Therapy After Distant Brain Failure Following Upfront Radiosurgery Alone. <i>Int J Radiat Oncol Biol Phys.</i> 2017;98(1):131-141.
652 653 654	35.	McTyre ER, Johnson AG, Ruiz J, et al. Predictors of neurologic and nonneurologic death in patients with brain metastasis initially treated with upfront stereotactic radiosurgery without whole-brain radiation therapy. <i>Neuro-oncology</i> , 2017:19(4):558-566.
655 656 657	36.	Yamamoto M, Aiyama H, Koiso T, et al. Validity of a Recently Proposed Prognostic Grading Index, Brain Metastasis Velocity, for Patients With Brain Metastasis Undergoing Multiple Radiosurgical Procedures. Int L Radiat Oncol Biol Phys. 2019:103(3):631-637
658 659 660	37.	Shaw E, Scott C, Souhami L, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of RTOG protocol 90- 05. <i>International Journal of Radiation Oncology Biology Physics</i> 2000;47(2):291-298
661 662 663	38.	Lehrer EJ, Peterson JL, Zaorsky NG, et al. Single versus Multifraction Stereotactic Radiosurgery for Large Brain Metastases: An International Meta-analysis of 24 Trials. <i>Int J Radiat Oncol Biol Phys.</i> 2019:103(3):618-630
664 665 666	39.	Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: Results and toxicity. <i>Radiotherapy and Oncology</i> . 2006;81(1):18-24.

667	40.	Gattozzi DA, Alvarado A, Kitzerow C, et al. Very Large Metastases to the Brain: Retrospective Study on
668	44	Outcomes of Surgical Management. <i>World neurosurgery</i> . 2018;116:e874-e881.
669	41.	Tawbi HA, Forsyth PA, Algazi A, et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to
670	40	the Brain. The New England Journal of Medicine. 2018;379(8):722-730.
671	42.	Gadgeel S, Peters S, Mok T, et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma
672		kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Annals of
6/3	40	oncology : official journal of the European Society for Medical Uncology. 2018;29(11):2214-2222.
674	43.	Shaw AT, Solomon BJ, Chiari R, et al. Loriatinib in advanced ROS1-positive non-small-cell lung cancer: a
675		multicentre, open-label, single-arm, phase 1-2 trial. <i>Lancet Oncol.</i> 2019;20(12):1691-1701.
676	44.	Reungwetwattana T, Nakagawa K, Cho BC, et al. CNS Response to Osimertinib Versus Standard
6//		Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Untreated EGFR-
678		Mutated Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2018;36(33):3290-3297.
679	45.	Wu YL, Ahn MJ, Garassino MC, et al. CNS Efficacy of Osimertinib in Patients with 1/90M-Positive
680		Advanced Non-Small-Cell Lung Cancer: Data From a Randomized Phase III Trial (AURA3). J Clin Oncol.
681		
682	46.	Lin NU, Borges V, Anders C, et al. Intracranial Efficacy and Survival With Tucatinib Plus Trastuzumab
683		and Capecitabine for Previously Treated HER2-Positive Breast Cancer With Brain Metastases in the
684		HER2CLIMB Irial. J Clin Oncol. 2020;38(23):2610-2619.
685	47.	Goldberg SB, Schalper KA, Gettinger SN, et al. Pembrolizumab for management of patients with NSCLC
686		and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label,
687		phase 2 trial. The Lancet Uncology. 2020;21(5):655-663.
688	48.	Qian JM, Yu JB, Mahajan A, Goldberg SB, Kluger HM, Chiang VLS. Frequent Use of Local Therapy
689		Underscores Need for Multidisciplinary Care in the Management of Patients With Melanoma Brain
690		Metastases Treated With PD-1 Inhibitors. Int J Radiat Oncol Biol Phys. 2019;105(5):1113-1118.
691	49.	Amaral I, Kiecker F, Schaefer S, et al. Combined immunotherapy with nivolumab and ipilimumab with
692		and without local therapy in patients with melanoma brain metastasis: a DeCOG* study in 380
693		patients. Journal for immunotherapy of cancer. 2020;8(1).
694	50.	Mahajan A, Ahmed S, McAleer MF, et al. Post-operative stereotactic radiosurgery versus observation
695		for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial.
696	- 4	Lancet Uncol. 2017;18(8):1040-1048.
697	51.	Regine WF, Rogozinska A, Kryscio RJ, Tibbs PA, Young AB, Patchell RA. Recursive partitioning analysis
698		classifications I and II: applicability evaluated in a randomized trial for resected single brain
699	50	metastases. American journal of clinical oncology. 2004;27(5):505-509.
700	52.	Brown PD, Ballman KV, Cerhan JH, et al. Postoperative stereotactic radiosurgery compared with whole
701		brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): a multicentre,
702	50	randomised, controlled, phase 3 trial. <i>Lancet Oncol.</i> 2017;18(8):1049-1060.
703	53.	Patel KR, Burri SH, Boseili D, et al. Comparing pre-operative stereotactic radiosurgery (SRS) to post-
704		operative whole brain radiation therapy (WBRT) for resectable brain metastases: a multi-institutional
705	F 4	analysis. Journal of Neuro-Uncology. 2017;131(3):611-618.
706	54.	Prabhu RS, Press RH, Patel KR, et al. Single-Fraction Stereotactic Radiosurgery (SRS) Alone Versus
707		Surgical Resection and SRS for Large Brain Metastases: A Multi-Institutional Analysis. Int J Radiat Uncol
708		Biol Phys. 2017;99(2):459-467.
709	55.	Roos DE, Wirth A, Burmeister BH, et al. Whole brain irradiation following surgery or radiosurgery for
710		solitary brain metastases: mature results of a prematurely closed randomized Trans-Tasman Radiation
/11		Uncology Group trial (TRUG 98.05). Radiotherapy and oncology : journal of the European Society for
/12	50	inerapeutic kaalology and Uncology. 2006;80(3):318-322.
/13	56.	Kayama I, Sato S, Sakurada K, et al. Effects of surgery with salvage stereotactic radiosurgery versus
/14		surgery with whole-brain radiation therapy in patients with one to four brain metastases (JCOG0504):
/15		A Phase III, noninteriority, randomized controlled trial. <i>Journal of Clinical Oncology</i> . 2018;36(33):3282-
/16		3289.

717 718	57.	Prabhu RS, Turner BE, Asher AL, et al. A multi-institutional analysis of presentation and outcomes for leptomeningeal disease recurrence after surgical resection and radiosurgery for brain metastases.
719		Neuro-oncology. 2019;21(8):1049-1059.
720	58.	Cagney DN, Lamba N, Sinha S, et al. Association of Neurosurgical Resection With Development of
721		Pachymeningeal Seeding in Patients With Brain Metastases. JAMA Oncol. 2019;5(5):703-709.
722	59.	Patel KR, Burri SH, Asher AL, et al. Comparing Preoperative With Postoperative Stereotactic
723		Radiosurgery for Resectable Brain Metastases: A Multi-institutional Analysis. <i>Neurosurgery</i> .
724		2016:79(2):279-285.
725	60.	Keller A. Doré M. Cebula H. et al. Hypofractionated Stereotactic Radiation Therapy to the Resection
726		Bed for Intracranial Metastases. International Journal of Radiation Oncology Biology Physics.
727		2017:99(5):1179-1189.
728	61.	Cleary RK, Meshman J, Dewan M, et al. Postoperative Fractionated Stereotactic Radiosurgery to the
729	•=-	Tumor Bed for Surgically Resected Brain Metastases. <i>Cureus</i> , 2017;9(5):e1279.
730	62	Minniti G Esposito V Clarke E et al Multidose stereotactic radiosurgery (9 Gy x 3) of the
731	02.	nostonerative resection cavity for treatment of large brain metastases. Int I Radiat Oncol Biol Phys
732		
732	63	Abmed KA Freilich IM Abundeh V et al Fractionated stereotactic radiotherapy to the post-operative
73/	05.	cavity for radioresistant and radiosensitive brain metastases. I Neurooncol 2014:118(1):179-186
735	64	Andrews DW Scott CB Sperduto DW et al. Whole brain radiation therapy with or without stereotactic
735	04.	radiosurgeny boost for nationts with one to three brain metastases: Phase III results of the PTOC 9508
730		randomicod trial / anest 2004;262(0422):1665 1672
757 720	6E	Murray KL Scott C. Croonborg HM, et al. A randomized phase III study of accelerated
730	05.	when a standard in patients with unresected brain metastasses a report of the
739		Rediction Thereasy Opeology Crown (PTOC) 0104 Just / Redict Opeol Rick Rhys, 1007;20(2),571 574
740	<i>cc</i>	Radiation Therapy Oncology Group (RTOG) 9104. Int J Radiat Oncol Biol Phys. 1997;39(3):571-574.
741	66.	rsao MN, Xu W, Wong RK, et al. Whole brain radiotherapy for the treatment of newly diagnosed
742	C7	multiple brain metastases. The Cochrane database of systematic reviews. 2018;1:Cd003869.
743	67.	Fritiletti Divi, Baliman KV, Brown PD, et al. Optimizing whole Brain Radiation Therapy Dose and
744		Fractionation: Results From a Prospective Phase 3 Trial (NCCTG N10/C [Alliance]/CEC.3). Int J Radiat
745	60	Uncol Biol Phys. 2020;106(2):255-260.
/46	68.	Westover KD, Mendel JI, Dan I, et al. Phase II trial of hippocampal-sparing whole brain irradiation with
747		simultaneous integrated boost for metastatic cancer. <i>Neuro-oncology</i> . 2020;22(12):1831-1839.
748	69.	Liu H, Xu X, Wang J, et al. Clinical study on different doses and fractionated radiotherapies for multiple
749		brain metastases of non-EGFR mutant lung adenocarcinoma. Annals of palliative medicine.
750		2020;9(4):2003-2012.
751	70.	Yang WC, Chen YF, Yang CC, et al. Hippocampal Avoidance Whole-brain Radiotherapy without
752		Memantine in Preserving Neurocognitive Function for Brain Metastases: A Phase II Blinded
753		Randomized Trial. Neuro-oncology. 2020;23(3):478-486.
754	71.	Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients
755		receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-
756		oncology. 2013;15(10):1429-1437.
757	72.	Soffietti R, Kocher M, Abacioglu UM, et al. A European Organisation for Research and Treatment of
758		Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to
759		three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life
760		results. J Clin Oncol. 2013;31(1):65-72.
761	73.	Mulvenna P, Nankivell M, Barton R, et al. Dexamethasone and supportive care with or without whole
762		brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases
763		unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority,
764		randomised trial. <i>Lancet</i> . 2016;388(10055):2004-2014.

765 766	74.	Priestman TJ, Dunn J, Brada M, Rampling R, Baker PG. Final results of the Royal College of Radiologists' trial comparing two different radiotherapy schedules in the treatment of cerebral metastases. <i>Clinical</i>
767		oncology (Royal College of Radiologists (Great Britain)). 1996;8(5):308-315.
768 769	75.	Borgelt B, Gelber R, Kramer S, et al. The palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. <i>Int J Radiat Oncol Biol Phys.</i> 1980;6(1):1-9.
770	76.	Borgelt B. Gelber R. Larson M. Hendrickson F. Griffin T. Roth R. Ultra-rapid high dose irradiation
771		schedules for the palliation of brain metastases: final results of the first two studies by the Radiation
772		Therapy Opcology Group. Int I Radiat Opcol Biol Phys. 1981:7(12):1633-1638
773	77	Kurtz IM Gelber B. Brady I.W. Carella BI. Cooper IS. The palliation of brain metastases in a favorable
774	<i>,,</i> ,	patient population: a randomized clinical trial by the Radiation Therapy Oncology Group. Int J Radiat
//5		Oncol Biol Phys. 1981;7(7):891-895.
//6	/8.	Gaspar L, Scott C, Rotman M, et al. Recursive Partitioning Analysis (RPA) of prognostic factors in three
777 778		Radiation Therapy Oncology Group (RTOG) brain metastases trials. <i>International Journal of Radiation</i> Oncology Biology Physics. 1997;37(4):745-751.
779	79.	Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, Chang EL. Current approaches to the management
780		of brain metastases. Nature reviews Clinical oncology. 2020;17(5):279-299.
781	80.	Aoyama H, Tago M, Kato N, et al. Neurocognitive function of patients with brain metastasis who
782		received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J
783		Radiat Oncol Biol Phys. 2007;68(5):1388-1395.
784	81.	Li J, Bentzen SM, Li J, Renschler M, Mehta MP. Relationship Between Neurocognitive Function and
785		Quality of Life After Whole-Brain Radiotherapy in Patients With Brain Metastasis. International Journal
786		of Radiation Oncology Biology Physics. 2008;71(1):64-70.
787	82.	Rapp SR, Case LD, Peiffer A, et al. Donepezil for Irradiated Brain Tumor Survivors: A Phase III
788		Randomized Placebo-Controlled Clinical Trial. J Clin Oncol. 2015;33(15):1653-1659.
789	83.	Page BR, Shaw EG, Lu L, et al. Phase II double-blind placebo-controlled randomized study of
790		armodafinil for brain radiation-induced fatigue. Neuro-oncology. 2015;17(10):1393-1401.
791	84.	Butler JM, Jr., Case LD, Atkins J, et al. A phase III, double-blind, placebo-controlled prospective
792		randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation
793		therapy. Int J Radiat Oncol Biol Phys. 2007;69(5):1496-1501.
794	85.	Berk L, Berkey B, Rich T, et al. Randomized phase II trial of high-dose melatonin and radiation therapy
795		for RPA class 2 patients with brain metastases (RTOG 0119). Int J Radiat Oncol Biol Phys.
796		2007;68(3):852-857.
797	86.	Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance of the
798		hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases
799		(RTOG 0933): A phase II multi-institutional trial. Journal of Clinical Oncology. 2014;32(34):3810-3816.
800	87.	Patchell RA, Tibbs PA, Regine WF, et al. Postoperative radiotherapy in the treatment of single
801		metastases to the brain: a randomized trial. Jama. 1998;280(17):1485-1489.
802	88.	Lawrence YR, Li XA, el Naga I, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol
803		Phys. 2010;76(3 Suppl):S20-27.
804	89.	Fokas E, Henzel M, Surber G, Kleinert G, Hamm K, Engenhart-Cabillic R. Stereotactic radiosurgery and
805		fractionated stereotactic radiotherapy: comparison of efficacy and toxicity in 260 patients with brain
806		metastases. J Neurooncol. 2012;109(1):91-98.
807	90.	Kirkpatrick JP, Wang Z, Sampson JH, et al. Defining the optimal planning target volume in image-guided
808		stereotactic radiosurgery of brain metastases: results of a randomized trial. International Journal of
809		Radiation Oncology, Biology, Physics. 2015;91(1):100-108.
810	91.	Raman S, Mou B, Hsu F, et al. Whole Brain Radiotherapy Versus Stereotactic Radiosurgery in Poor-
811		Prognosis Patients with One to 10 Brain Metastases: A Randomised Feasibility Study. <i>Clinical Oncoloav</i> .
812		2020;32(7):442-451.

813	92.	Zhuang H, Tao L, Wang X, et al. Tyrosine Kinase Inhibitor Resistance Increased the Risk of Cerebral
814		Radiation Necrosis After Stereotactic Radiosurgery in Brain Metastases of Non-small-Cell Lung Cancer:
815		A Multi-Institutional Retrospective Case-Control Study. <i>Frontiers in oncology</i> , 2020:10:12.
816	93	Sperduto PW Wang M Robins HL et al. A phase 3 trial of whole brain radiation therapy and
017	55.	storestactic radiosurgeny along versus W/PPT and SPS with temporalemide or erletinib for non-small cell
017		
818		lung cancer and 1 to 3 brain metastases: Radiation Therapy Uncology Group 0320. Int J Radiat Uncol
819		Biol Phys. 2013;85(5):1312-1318.
820	94.	Tanenbaum DG, Buchwald ZS, Jhaveri J, et al. Dosimetric Factors Related to Radiation Necrosis After 5-
821		Fraction Radiosurgery for Patients With Resected Brain Metastases. Practical radiation oncology.
822		2020:10(1):36-43.
823	95	Minniti G. Clarke F. Lanzetta G. et al. Stereotactic radiosurgery for brain metastases: analysis of
023	55.	outcome and risk of brain radionescosis. Badiation encology (London, England), 2011;6:49
824	00	Outcome and fisk of brain radionecrosis. Radiation oncology (London, England). 2011;6:48.
825	96.	Bionigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a
826		predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol
827		Biol Phys. 2010;77(4):996-1001.
828	97.	Inoue HK, Sato H, Seto K, et al. Five-fraction CyberKnife radiotherapy for large brain metastases in
829		critical areas: impact on the surrounding brain volumes circumscribed with a single dose equivalent of
830		14 Gy (V14) to avoid radiation necrosis Journal of radiation research 2014:55(2):334-342
Q21	08	Earligi S. Ruschin M. Soliman H. et al. Adverse Padiation Effect After Hypofractionated Stereotactic
031	50.	Padia surgers in 5 Deily Susstians for Surgical Cavities and Intert Puris Matertages Int / Dadiat Ones/
832		Radiosurgery in 5 Daily Fractions for Surgical Cavities and intact Brain Metastases. Int J Radiat Oncol
833		Biol Phys. 2020;106(4):772-779.
834	99.	Stumpf PK, Cittelly DM, Robin TP, et al. Combination of Trastuzumab Emtansine and Stereotactic
835		Radiosurgery Results in High Rates of Clinically Significant Radionecrosis and Dysregulation of
836		Aquaporin-4. Clinical cancer research : an official journal of the American Association for Cancer
837		Research. 2019:25(13):3946-3953.
838	100	Martin AM, Cagney DN, Catalano PL et al. Immunotherapy and Symptomatic Radiation Necrosis in
830		Patients With Brain Metastases Treated With Stereotactic Radiation //MA Oncol 2018//(8)/1123-
0.00		
840		
841	101.	Diao K, Bian SX, Routman DIVI, et al. Combination ipilimumab and radiosurgery for brain metastases:
842		tumor, edema, and adverse radiation effects. <i>J Neurosurg</i> . 2018;129(6):1397-1406.
843	102.	Colaco RJ, Martin P, Kluger HM, Yu JB, Chiang VL. Does immunotherapy increase the rate of radiation
844		necrosis after radiosurgical treatment of brain metastases? <i>J Neurosurg</i> . 2016;125(1):17-23.
845	103.	Williams NL, Wuthrick EJ, Kim H, et al. Phase 1 Study of Ipilimumab Combined With Whole Brain
846		Radiation Therapy or Radiosurgery for Melanoma Patients With Brain Metastases. International
847		Journal of Radiation Oncology, Biology, Physics, 2017:99(1):22-30.
8/8	104	Weingarten N. Kruser TI. Bloch Ω . Symptomatic radiation percess in brain metastasis nationts treated
040	104.	with storestestic rediscursory and immunothereasy. <i>Clinical neurolesy and neurosurgery</i> 2010:170:14
849		with stereotactic radiosurgery and immunotherapy. <i>Clinical neurology and neurosurgery</i> . 2019;179:14-
850		18.
851	105.	Rauschenberg R, Bruns J, Brütting J, et al. Impact of radiation, systemic therapy and treatment
852		sequencing on survival of patients with melanoma brain metastases. European Journal of Cancer.
853		2019;110:11-20.
854	106.	Patel KR, Shoukat S, Oliver DE, et al. Ipilimumab and Stereotactic Radiosurgery Versus Stereotactic
855		Radiosurgery Alone for Newly Diagnosed Melanoma Brain Metastases American Journal of Clinical
856		Oncology: Cancer Clinical Trials 2017:40(5):444-450
050	107	Mohar D. Liberati A. Totalaff I. Altman DC. Crown D. Proferred reporting items for systematic reviews
05/	107.	woner D, Liberati A, Tetzian J, Altman DG, Group P. Preferred reporting items for systematic reviews
858		and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006-1012.
859		