

1

Public Comment DRAFT

2

3

4

Radiation Therapy for Bladder Cancer: An ASTRO/AUA/SUO Clinical Practice Guideline

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Sources of support: This work was funded by the American Society for Radiation Oncology, the American Urological Association, and the Society for Urologic Oncology.

Disclaimer and Adherence: ASTRO guidelines present scientific, health, and safety information that may reflect scientific or medical opinion. They are available to ASTRO members and the public for educational and informational purposes only and do not constitute medical or treatment advice. Commercial use of any content in this paper without the prior written consent of ASTRO is prohibited.

Adherence to this guideline does not ensure successful treatment in every situation. This guideline should not be deemed inclusive of all proper methods of care or of all factors influencing the treatment decision, nor is it intended to be exclusive of other methods reasonably directed to obtaining the same results. The information provided is not intended to replace the independent judgment of the treating physician in the context of individual patient circumstances and should be reviewed with the patient as part of shared decision-making. ASTRO assumes no liability for the information, conclusions or findings contained in its guidelines. This guideline is based on information available at the time the task force conducted its review and discussions on this topic. There may be new developments that are not reflected in this guideline and that may, over time, be a basis for updating the guideline.

43

Table of Contents

44	Preamble.....	3
45	1. Introduction.....	5
46	2. Methods.....	5
47	2.1. Task force composition	5
48	2.2. Document review and approval.....	6
49	2.3. Evidence review	6
50	2.4. Scope of the guideline.....	7
51	3. KQs and Recommendations.....	8
52	3.1. KQ1: Indications and contraindications for bladder preservation with curative-intent RT (Table 3)....	8
53	Figure 1 Management of nonmetastatic bladder cancer (stages I-IIIA)	12
54	3.2. KQ2 Appropriate RT techniques and dose-fractionation for intact nonmetastatic disease (Table 5)..	12
55	3.3. KQ3 Indications, dose-fractionation, and techniques for postoperative RT for nonmetastatic disease	
56	(Table 4)	17
57	3.4. KQ4: Indications for RT and dose-fractionation for metastatic or symptomatic disease (Table 6)....	21
58	Figure 2 Management of bladder cancer treated with noncurative intent.....	23
59	4. Conclusions and Future Directions.....	24
60	5. Acknowledgments	25
61	PRISMA 2020 study selection diagram.....	26
62	References	26
63	Appendix E1 Peer Reviewers and Disclosures (Comprehensive).....	34
64	Appendix E2 Abbreviations	34
65	Appendix E3 PICOTS Questions / Literature Search Strategy.....	34
66		
67		

68 Preamble

69 As a leading organization in radiation oncology, the American Society for Radiation Oncology (ASTRO) is
70 dedicated to improving quality of care and patient outcomes. A cornerstone of this goal is the development
71 and dissemination of clinical practice guidelines based on systematic methods to evaluate and classify
72 evidence, combined with a focus on patient-centric care and shared decision-making. ASTRO develops and
73 publishes guidelines without commercial support, and members volunteer their time.

74
75 **Disclosure Policy**—ASTRO has detailed policies and procedures related to disclosure and management of
76 industry relationships to avoid actual, potential, or perceived conflicts of interest. All task force members
77 are required to disclose industry relationships and personal interests from 12 months before the initiation
78 of the writing effort. Disclosures for the chair and vice chair go through a review process with final approval
79 by ASTRO’s Conflict of Interest Review Committee. For the purposes of full transparency, task force
80 members’ comprehensive disclosure information is included in this publication. Peer reviewer disclosures
81 are also reviewed and included (Supplementary Materials, Appendix E1). The complete disclosure policy for
82 Formal Papers is [online](#).

83
84 **Selection of Task Force Members**—ASTRO strives to avoid bias and is committed to creating a task force
85 that includes a diverse and multidisciplinary group of experts. Representatives from organizations and
86 professional societies with related interests and expertise are also invited to serve on the task force.

87
88 **Methodology**—ASTRO’s task force uses evidence-based methodologies to develop guideline
89 recommendations in accordance with the National Academy of Medicine standards.^{1,2} The evidence
90 identified from key questions (KQs) is assessed using the Population, Intervention, Comparator, Outcome,
91 Timing, Setting (PICOTS) framework. A systematic review of the KQs is completed, which includes creation
92 of evidence tables that summarize the evidence base task force members use to formulate
93 recommendations. Table 1 describes ASTRO’s recommendation grading system. See [Appendix E2](#) in
94 Supplementary Materials for a list of abbreviations used in the guideline.

95
96 **Consensus Development**—Consensus is evaluated using a modified Delphi approach. Task force members
97 confidentially indicate their level of agreement on each recommendation based on a 5-point Likert scale,
98 from “strongly agree” to “strongly disagree”. A prespecified threshold of $\geq 75\%$ ($\geq 90\%$ for expert opinion
99 recommendations) of raters who select “strongly agree” or “agree” indicates consensus is achieved.
100 Recommendation(s) that do not meet this threshold are removed or revised. Recommendations edited in
101 response to task force or reviewer comments are resurveyed before submitting for approval.

102
103 **Annual Evaluation and Updates**—Guidelines are evaluated annually beginning 2 years after publication for
104 new, potentially practice-changing studies that could result in a guideline update. In addition, ASTRO’s
105 Guideline Subcommittee will commission a replacement or reaffirmation within 5 years of publication.

108 **Table 1** ASTRO recommendation grading classification system

ASTRO's recommendations are based on evaluation of multiple factors including the QoE and panel consensus, which, among other considerations, inform the strength of recommendation. QoE is based on the body of evidence available for a particular key question and includes consideration of number of studies, study design, adequacy of sample sizes, consistency of findings across studies, and generalizability of samples, settings, and treatments.

Strength of Recommendation	Definition	Overall QoE Grade	Recommendation Wording
Strong	<ul style="list-style-type: none"> Benefits clearly outweigh risks and burden, or risks and burden clearly outweigh benefits. All or almost all informed people would make the recommended choice. 	Any (usually high, moderate, or expert opinion)	"Recommend/Should"
Overall QoE Grade	Type/Quality of Study	Evidence Interpretation	
High	<ul style="list-style-type: none"> 2 or more well-conducted and highly generalizable RCTs or well-conducted meta-analyses of such randomized trials. 	The true effect is very likely to lie close to the estimate of the effect based on the body of evidence.	
Moderate	<ul style="list-style-type: none"> 1 well-conducted and highly generalizable RCT or a meta-analysis including such a trial OR 2 or more RCTs with some weaknesses of procedure or generalizability OR 2 or more well-conducted and highly generalizable observational or single-arm prospective interventional studies with consistent findings. 	The true effect is likely to be close to the estimate of the effect based on the body of evidence, but it is possible that it is substantially different.	
Low	<ul style="list-style-type: none"> 1 RCT with some weaknesses of procedure or generalizability OR 1 or more RCTs with serious deficiencies of procedure or generalizability OR 1 well-conducted observational or single-arm prospective interventional study OR 2 or more observational or single-arm prospective interventional studies with some weaknesses of procedure or generalizability. 	The true effect may be substantially different from the estimate of the effect. There is a risk that future research may significantly alter the estimate of the effect size or the interpretation of the results.	
Expert Opinion*	<ul style="list-style-type: none"> Consensus of the panel based on clinical judgment and experience, due to absence of evidence or limitations in evidence. 	Strong consensus ($\geq 90\%$) of the panel guides the recommendation despite insufficient evidence to discern the true magnitude and direction of the net effect.	

109 Abbreviations: ASTRO = American Society for Radiation Oncology; QoE = quality of evidence; RCT(s) = randomized controlled trial(s).

110 *A lower QoE, including expert opinion, does not imply that the recommendation is conditional. Many important clinical

111 questions addressed in guidelines do not lend themselves to clinical trials, but there still may be consensus that the benefits
112 of a treatment or diagnostic test clearly outweigh its risks and burden.

113 ASTRO's methodology allows for use of implementation remarks meant to convey clinically practical information that may

114 enhance the interpretation and application of the recommendation. Although each recommendation is graded according to
115 recommendation strength and QoE, these grades should not be assumed to extend to the implementation remarks.

116 1. Introduction

117 Bladder cancer is the tenth leading cause of cancer death in the United States and the fifth leading
118 cancer diagnosis amongst men. In 2025, there will be an estimated 85,000 new cases of bladder cancer
119 (approximately 65,000 in men and 20,000 in women) and an estimated 17,000 deaths from bladder
120 cancer.³ A standard treatment for muscle-invasive bladder cancer (MIBC) has been cystectomy with or
121 without neoadjuvant chemotherapy; however, cystectomy is not being performed in up to 50% of patients
122 with MIBC and as such, there is an undertreated and underserved population of patients who are not
123 getting optimal curative-intent treatment.^{4,5} An alternative to this approach is trimodal therapy (TMT),
124 which includes transurethral resection of bladder tumor (TURBT) followed by chemoradiation for bladder
125 preservation. Despite multiple prospective trials dating back to the 1980s, TMT has not historically had
126 widespread acceptance. However, with consistently favorable and mature outcome data and large
127 cooperative group trials using TMT, there has been growing interest in and greater adoption of TMT.⁶⁻¹¹

128 A multidisciplinary approach to MIBC is required to appropriately select patients for TMT and
129 optimally individualize patient care. It is essential to understand the indications for TMT, how outcomes
130 following TMT compare with radical cystectomy (RC),¹¹ how to integrate radiation therapy (RT) with
131 systemic therapy, and the technical aspects of how RT is performed. Additionally, the use of RT in the
132 postoperative and metastatic bladder cancer setting is an important tool in the treatment of this disease,
133 especially as systemic therapies have improved overall survival (OS) in this patient population. ASTRO
134 commissioned a task force to review published literature on the use of RT across the clinical spectrum for
135 bladder cancer to create evidence-based recommendations that address 5 clinical KQs.

136 2. Methods

137 2.1. Task force composition

138 The task force consisted of a multidisciplinary team of radiation, medical, and urologic oncologists;
139 a medical physicist; and a patient representative. This guideline was developed in partnership with the
140 American Urological Association (AUA) and the Society for Urologic Oncology (SUO) and in collaboration
141 with the American Society of Clinical Oncology (ASCO), European Association of Urology (EAU), and
142 European Society for Radiotherapy and Oncology, who provided representatives and peer reviewers.

144 2.2. Document review and approval

145 The guideline was reviewed by XX official peer reviewers ([Appendix E1](#)) and revised accordingly.

146 The modified guideline was posted on the ASTRO website for public comment from January to February

147 2026. The final guideline was approved by the ASTRO Board of Directors and endorsed by the **TBD**.

148

149 2.3. Evidence review

150 KQs were developed by the ASTRO guideline subcommittee in conjunction with the guideline chairs
151 and then reviewed by the full task force. Using the PICOTS framework ([Table 2](#)), a systematic search of human
152 participant studies retrieved from Ovid MEDLINE and Embase databases was conducted for English-language
153 publications between January 2009, through November 18, 2024. Allowable publication types comprised
154 prospective studies including randomized controlled trials (RCTs), meta-analyses (of RCTs and prospective
155 studies only), retrospective studies, and dosimetric/contouring studies. The population of interest was adults
156 (age ≥ 18 years) who received a diagnosis of bladder cancer and were treated with RT. The following
157 requirements for study size were applied: (1) for retrospective studies, KQ1 was limited to ≥ 65 patients and
158 KQ2 was limited to ≥ 100 patients but no threshold was used for KQs 3 and 4; (2) for dosimetric studies with
159 validated clinical endpoints, ≥ 10 patients were required and only included for KQ3. Universal exclusion criteria
160 included preclinical and nonhuman studies; publication types including abstract only, review articles,
161 comments, or editorials; study types such as health economics/cost analysis studies and treatment of
162 secondary primaries. For specific subquestions where limited data were available, expert opinion was relied on
163 to support recommendations. Full-text articles were assessed by the task force to determine the final included
164 study list resulting in 153 studies (see the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
165 [[PRISMA](#)] flow diagram showing the number of articles screened, excluded, and included in the evidence
166 review) and [Appendix E3](#) in Supplementary Materials for the literature search strategy, which includes the
167 evidence search parameters and inclusion/exclusion criteria.

168 The data used by the task force to formulate recommendations are summarized in evidence tables
169 available in Supplementary Materials, Appendix E4. References selected and published in this document are
170 representative and not all-inclusive. Additional ancillary articles not in the evidence tables are included in
171 the text; these were not used to support the evidence-based recommendations but may have informed
172 expert opinion.

173

174 2.4. Scope of the guideline

175 This guideline only addresses the topics specified in the KQs ([Table 2](#)). The scope includes the use of
 176 RT in bladder cancer in the upfront, definitive setting and in the postoperative and metastatic settings.
 177 Discussions of indications for RT, integration of systemic therapies, and RT techniques in these settings are
 178 also included. This guideline is not intended to address surgical management of MIBC, detailed discussion
 179 of systemic therapy, targeted therapies, intravesical or local therapy options, and bladder preservation
 180 techniques that do not incorporate RT. The key outcomes of interest are oncologic results including OS,
 181 disease-specific survival, metastasis-free survival, progression-free survival, locoregional control, and
 182 bladder-intact event-free survival.

183

184

185 **Table 2** KQs in PICO format

KQ	Population	Intervention	Comparator	Outcomes
1	What are the indications and contraindications for bladder preservation with curative-intent RT, with or without systemic therapy, for patients with nonmetastatic bladder cancer?			
	<ul style="list-style-type: none"> • Adults with nonmetastatic bladder cancer 	<ul style="list-style-type: none"> • RT +/- systemic therapy 	<ul style="list-style-type: none"> • Cystectomy +/- neoadjuvant systemic therapy • Systemic therapy alone • TURBT alone or observation • RT alone 	<ul style="list-style-type: none"> • Bladder-intact event-free survival • Complete response rates • Cystectomy-free rate • Disease-specific survival • Locoregional control • Metastasis-free survival • Overall survival • NMIBC recurrence rates • Patient- and provider-reported QoL, adverse events, toxicities
2	What are appropriate RT techniques (eg, target volumes, modalities, simulation, image guidance) and dose-fractionation regimens for patients with intact, nonmetastatic bladder cancer being treated with curative intent?			
	<ul style="list-style-type: none"> • Same as KQ1 	<ul style="list-style-type: none"> • RT/trimodal therapy • Hypofractionated RT • Bladder only RT • Adaptive RT • Bladder tumor boost • IMRT • Proton therapy 	<ul style="list-style-type: none"> • Whole pelvis RT, small pelvis RT, mini-pelvis RT, or pelvic RT • Conventionally fractionated RT • 3-D CRT • Photon therapy 	<ul style="list-style-type: none"> • Patterns of failure • Safety, feasibility • Toxicity
3	What are the indications, appropriate RT techniques (eg, target volumes, modalities, simulation, image guidance), and dose-fractionation regimens for postoperative RT, with or without systemic therapy, for patients with nonmetastatic bladder cancer status postcystectomy or partial cystectomy?			
	<ul style="list-style-type: none"> • Same as KQ1 	<ul style="list-style-type: none"> • +/- RT (postoperative, adjuvant, salvage) +/- systemic therapy 	<ul style="list-style-type: none"> • Cystectomy +/- systemic therapy without RT 	<ul style="list-style-type: none"> • Disease-specific survival • Locoregional control • Metastasis-free survival • Overall survival • Patient- and provider-reported QoL, adverse events, toxicities • Patterns of failure

4	What are indications and appropriate dose-fractionation regimens for RT to the bladder or sites of metastases for patients with metastatic or symptomatic bladder cancer being treated with noncurative intent?			
	<ul style="list-style-type: none"> Adults with metastatic or symptomatic bladder cancer OR nonmetastatic bladder cancer treated with noncurative intent 	<ul style="list-style-type: none"> RT to bladder +/- systemic therapy RT to metastatic disease +/- systemic therapy Stereotactic body RT 	<ul style="list-style-type: none"> Observation or best supportive care Systemic treatment alone 	<ul style="list-style-type: none"> Locoregional control/palliation Metastasis-free survival Overall survival Patient- and provider-reported QoL, adverse events, toxicities Patterns of failure Progression-free survival Safety, feasibility

186 Abbreviations: 3-D CRT = 3-dimensional conformal radiation therapy; IMRT = intensity modulated radiation therapy; KQs = key
 187 questions; MIBC = muscle-invasive bladder cancer; NMIBC = non-muscle invasive bladder cancer; PICO = Population,
 188 Intervention, Comparator, Outcome; QoL = quality of life; RT = radiation therapy; TURBT = transurethral resection of bladder
 189 tumor.

190

191 3. KQs and Recommendations

192 3.1. KQ1: Indications and contraindications for bladder preservation with 193 curative-intent RT (Table 3)

194

195 *See evidence tables in Supplementary Materials, Appendix E4, for the data supporting the*
 196 *recommendations for KQ1 and [Fig 1](#).*

197

198 **What are the indications and contraindications for bladder preservation with curative-intent RT, with or**
 199 **without systemic therapy, for patients with nonmetastatic bladder cancer?**

200

201 **Table 3** Indications and contraindications for bladder preservation with RT

KQ1 Recommendations	Strength of Recommendation	Quality of Evidence (Refs)
<p>1. For patients with cT2-4aN0M0 muscle-invasive bladder cancer, trimodal therapy or radical cystectomy is recommended.</p> <p><u>Implementation remarks:</u></p> <ul style="list-style-type: none"> Trimodal therapy includes TURBT followed by chemoradiation. Favorable prognostic features for bladder-preserving RT include: <ul style="list-style-type: none"> cT2 disease solitary tumors tumors <7cm predominant urothelial carcinoma absence of extensive carcinoma in situ absence of bilateral hydronephrosis 	Strong	High 7,9,11-15
<p>2. For patients with high-grade, cT1N0M0 non-muscle invasive bladder cancer with a recurrence despite available intravesical or systemic therapies (or are not candidates for those options)</p>	Conditional	Low 16

and decline or are ineligible for cystectomy, trimodal therapy is conditionally recommended.		
3. For patients with cN1-3 bladder cancer, trimodal therapy or radical cystectomy is recommended after neoadjuvant or induction systemic therapy without progression.	Strong	Low 17-19
4. For patients with bladder cancer undergoing trimodal therapy, concurrent radiosensitizing systemic therapy is recommended. <u>Implementation remarks:</u> Concurrent systemic therapy options include: <ul style="list-style-type: none"> Chemotherapy (preferred) (ideally cisplatin +/- 5-FU, 5-FU + mitomycin-C, or low-dose gemcitabine); OR Carbogen and nicotinamide; OR Anti PD-1/PD-L1 therapy (for those who are not candidates for the above or as part of a clinical trial) 	Strong	High (chemotherapy) 7,9,12,15,20,21
		Moderate (carbogen/nicotinamide) 22-24
		Low (anti PD-1/PD-L1) 18,25-27
5. For patients with bladder cancer at a higher risk of distant metastatic progression (eg, cT3-4 and/or N+) who plan to receive trimodal therapy, neoadjuvant systemic therapy is recommended.	Strong	Low 28-35
6. For patients with bladder cancer planning to receive trimodal therapy, attempting a maximal TURBT is recommended.	Strong	Low 7,9,12,36
7. For patients with bladder cancer post trimodal therapy, surveillance with axial imaging of the chest, abdomen and pelvis; cystoscopy; and urine cytology is recommended.	Strong	Low 7,9,12,37
8. For patients with bladder cancer post trimodal therapy who have residual disease or develop a recurrence in the bladder, urologic evaluation is recommended.	Strong	Low 11,14,38

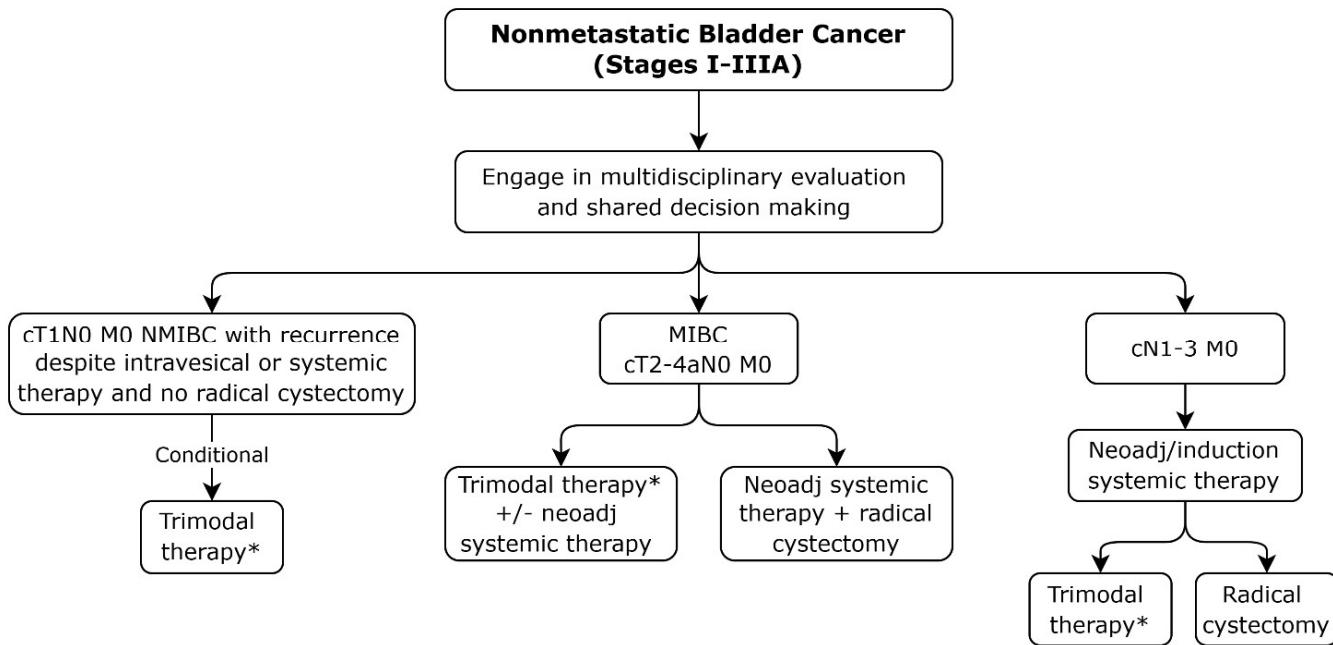
202 Abbreviations: 5-FU = 5-fluorouracil; KQ = key question; PD-1 = programmed cell death protein 1; N+ = node-positive;
 203 PD-L1 = programmed cell death ligand 1; RT = radiation therapy; TURBT = transurethral resection of bladder tumor.

204
 205 TMT, which consists of maximal TURBT followed by concurrent chemoradiation, is an established
 206 alternative to RC for appropriately selected patients with localized MIBC ([Figure 1](#)).¹¹ Multiple RCTs^{7,9,15,22}
 207 have demonstrated that TMT achieves long-term OS and disease-specific survival rates similar to RC in
 208 appropriately selected patients, while maintaining quality of life and urinary function. Ideally, TMT is part of
 209 a multidisciplinary framework that emphasizes shared decision making and is a curative treatment
 210 alongside RC.

211 Use of TMT has been most extensively studied in cT2-4aN0M0 bladder cancer yet select patients
 212 with cT4bN0M0 disease may also be candidates. Additionally, patients with cT1N0M0, non-muscle invasive
 213 bladder cancer (NMIBC), who are not candidates for or have recurred despite available intravesical or
 214 systemic therapy options and decline or are ineligible for cystectomy may be candidates for TMT based on a
 215 prospective trial that demonstrates efficacy and safety to this approach.¹⁶ Similarly, both TMT and RC are
 216 options for patients who have clinical regional node-positive disease (any T-classification, cN1-3M0) who do
 217 not have distant progression after neoadjuvant or induction systemic therapy ([Figure 1](#)).^{17,39,40}

218 Favorable prognostic features for TMT include cT2 disease, solitary tumors, tumors <7 cm in size,
219 predominant urothelial histology, and the absence of extensive carcinoma in situ or bilateral
220 hydronephrosis.^{7,9,11-14,20,21,23-25,28,37,41-52} Patients with extensive carcinoma in situ, multifocal tumors,
221 generally have inferior outcomes with TMT, although these are also poor prognostic features in the setting
222 of RC as well. While not absolute contraindications to TMT, caution is advised for patients with active
223 inflammatory bowel disease, unresolved grade 2 to 4 gastrointestinal (GI) toxicity from prior pelvic RT, or
224 severely reduced bladder capacity, as toxicity risk may outweigh the benefit. Patients with poor
225 performance status, inability to complete a full RT course, poor baseline bladder function and/or
226 continence, or lack of access to close follow-up are less ideal candidates for bladder preservation.

227 Maximal TURBT should be performed before TMT whenever feasible, as complete macroscopic
228 tumor resection strongly correlates with complete response rates and bladder-intact event-free
229 survival.^{6,7,9,12,15,20,23,24,49,50,52,53} Where available, advanced imaging such as multiparametric magnetic
230 resonance imaging (MRI) (using Vesical Imaging Reporting and Data System [VI-RADS] scoring) or positron
231 emission tomography/computed tomography (PET/CT) scan can refine local and nodal staging, particularly
232 for cT3 disease, and may help identify candidates most likely to benefit from bladder preservation.^{54,55}
233 Other emerging tools for patient selection include circulating tumor DNA and molecular classifiers, but
234 these remain investigational and should not yet guide therapy outside clinical trials.


235 Most evidence supporting TMT derives from patients with pure urothelial carcinoma.⁷
236 Nevertheless, these recommendations extend to urothelial carcinomas exhibiting limited squamous or
237 glandular histologic subtypes, which have shown comparable outcomes.^{43,44,56} Data for rarer variants
238 including plasmacytoid, sarcomatoid, micropapillary, or nested subtypes are extremely limited, and
239 management should be individualized based on multidisciplinary discussion. Given the paucity of
240 prospective data, a recommendation on strict exclusions based on histology is not included but
241 documentation of histological subtype in clinical trials and registries is encouraged to inform future
242 guidance.

243 Concurrent chemotherapy is the preferred radiosensitizing approach for patients undergoing TMT.
244 9,12-14,20,23,28,37,41,42,48,52,57-59 Standard systemic therapy regimens include cisplatin with or without 5-
245 fluorouracil (5-FU), 5-FU plus mitomycin C, or low-dose gemcitabine, each of which has demonstrated
246 improved efficacy compared with RT alone. For patients who are ineligible for these chemotherapy agents,
247 alternative radiosensitizing chemotherapy options include single-agent 5-FU or capecitabine, either alone
248 or combined with mitomycin C or paclitaxel, although data supporting these regimens are more limited.⁶⁰
249 The addition of carbogen and nicotinamide to RT, provides another radiosensitizing strategy by improving
250 tumor oxygenation;^{23,24,26} however, its clinical use is largely confined to select centers in the United
251 Kingdom and has not been widely adopted in the United States.

252 For patients who decline or are ineligible for chemotherapy, emerging data support the
253 investigational use of immune checkpoint inhibitors such as anti-programmed cell death protein-1
254 programmed cell death ligand 1 agents (durvalumab, pembrolizumab, nivolumab) concurrently with RT,
255 ideally in the context of a prospective trial.^{18,25-27} Early-phase studies suggest safety and promising efficacy
256 for these regimens in patients unable to undergo conventional chemoradiation.^{18,25-27}

257 For patients with higher-risk features such as cT3-4 or N1-3 disease, neoadjuvant cisplatin-based
258 chemotherapy before TMT is recommended.²⁸⁻³⁵ One trial demonstrated an OS benefit for neoadjuvant
259 chemotherapy before either RC or RT, irrespective of treatment modality.⁶¹ However, most patients in this
260 study received RC. Similarly, in another RCT,³¹ patients who received neoadjuvant chemotherapy continued
261 to derive additional benefit from concurrent radiosensitization, implying complementary mechanisms.
262 These studies were not powered to detect small (5%) OS differences, and definitive evidence supporting
263 neoadjuvant chemotherapy in the RT cohort remains limited. Therefore, by analogy to surgical paradigms,
264 neoadjuvant therapy should be discussed in a multidisciplinary setting and offered selectively to patients,
265 acknowledging the limited direct data.^{61,62} There is an ongoing single arm trial evaluating risk-adapted
266 bladder preservation with immunotherapy and RT in patients with a ≤T1 response to neoadjuvant therapy
267 (NCT07061964).

268 Following completion of TMT, patients should undergo rigorous surveillance to ensure early
269 detection of recurrence.^{7,9,12,15,20,23,24,49,50,52,53} Follow-up ideally includes cystoscopic evaluation with urine
270 cytology every 3 months and axial imaging of the chest, abdomen, and pelvis every 3-6 months for the first
271 2 years, then at gradually increasing intervals.^{7,9,12,37} If cystoscopy reveals a suspicious residual lesion or
272 equivocal abnormality, a targeted rebiopsy may be performed to confirm complete response. Patients with
273 NMIBC recurrences can generally be managed with TURBT with or without intravesical therapy, whereas
274 MIBC relapses are best treated with salvage RC, which achieves oncologic outcomes comparable to upfront
275 surgery in contemporary series.^{11,14,38}

277

278 **Figure 1 Management of nonmetastatic bladder cancer (stages I-IIIA)**

279 Abbreviations: MIBC = muscle-invasive bladder cancer; neoadj = neoadjuvant; NMIBC = non-muscle invasive bladder
280 cancer; TURBT = transurethral resection of bladder tumor.

281 *Attempt maximal TURBT followed by RT-based bladder preservation with concurrent radiosensitization.

282

283 **3.2. KQ2 Appropriate RT techniques and dose-fractionation for intact 284 nonmetastatic disease (Table 5)**

285 See evidence tables in Supplementary Materials, Appendix E4, for the data supporting the
286 recommendations for KQ2.

287

288 **What are appropriate RT techniques (eg, target volumes, modalities, simulation, image guidance) and
289 dose-fractionation regimens for patients with intact, nonmetastatic bladder cancer being treated with
290 curative intent?**

291

292 **Table 4 Appropriate RT techniques and dose-fractionation regimens for intact nonmetastatic disease**

KQ2 Recommendations	Strength of Recommendation	Quality of Evidence (Refs)
Volumes		
1. For patients with intact cT2-4N0M0 bladder cancer receiving RT, elective RT to pelvic lymph nodes is conditionally recommended based on tumor characteristics (eg, T3-4 disease).	Conditional	Moderate 9,28,38,49,63-66
2. For male patients with intact cT2-4N0-3M0 bladder cancer including the prostate in the target volume is conditionally recommended for tumors at the base or neck of the bladder, T4 disease, or tumors with prostatic urethral involvement receiving RT.	Conditional	Moderate 15,24

3. For patients with intact cT2-4N0-3M0 bladder cancer receiving RT, whole bladder RT to full dose or reduced dose to uninvolved bladder with a partial tumor boost is recommended.	Strong	High 9,15,24
Dose-Fractionation		
4. For patients with intact, cT1-4N0-3M0 bladder cancer receiving RT, daily RT without a mid-treatment break for cystoscopic response assessment is recommended.	Strong	Moderate 9,24,50
5. For patients with intact, cT1-4N0M0 bladder cancer receiving RT to the bladder alone, a dose of 5500 cGy in 20 fractions or 6400-6480 cGy in 32-36 fractions is recommended. <u>Implementation remark:</u> A lower dose of 6120 cGy in 180 cGy fractions may be an option for cT1N0M0 bladder cancer.	Strong	High 9,15,16,24,67
6. For patients with intact, cT2-4N0M0 bladder cancer receiving RT to the bladder and lymph nodes, a dose of 4000-4600 cGy in 20-25 fractions to the elective lymph nodes and bladder, with a boost to the bladder to a total dose of 6400-6480 cGy in 32-36 fractions is recommended. <u>Implementation remark:</u> If treating with a 20-fraction regimen, a dose of approximately 4400 cGy to the elective lymph nodes may be an option.	Strong	Low 9,24
7. For patients with cT2-4N1-3M0 bladder cancer, a focal boost to gross nodal disease is conditionally recommended with the dose dependent on normal tissue tolerance. <u>Implementation remark:</u> A BED up to 6400-6480 cGy in 180-200 cGy fractions to gross disease and \geq 4500 cGy to elective nodes may be reasonable.	Conditional	Low 19
8. For patients with intact, cT2-4N0-3M0 bladder cancer receiving RT, dose escalation to the bladder is not recommended outside of a clinical trial or multi-institutional registry.	Strong	Moderate 15,68-71
Techniques		
9. For patients with intact cT1-4N0-3M0 bladder cancer receiving RT, IMRT (including VMAT) using daily image guidance with cone-beam CT to verify bladder volume is recommended.	Strong	Moderate 72,73
10. For patients with intact cT1-4N0-3M0 bladder cancer receiving RT, adaptive RT is conditionally recommended where target coverage and OAR constraints cannot be met and/or daily setup is not reproducible with traditional treatment planning.	Conditional	Moderate 15,70,74,75

293 Abbreviations: BED = biologically equivalent dose; CT = computed tomography; IMRT = intensity modulated radiation
 294 therapy; KQ = key question; OAR = organ(s) at risk; RT = radiation therapy; VMAT = volumetric modulated arc
 295 therapy.

296

297 RT techniques have improved globally since the first trials of TMT in the 1980s and this has allowed
 298 for more conformal treatment with fewer side effects for patients with bladder cancer. While no RCT
 299 comparing intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3-
 300 D CRT) for bladder cancer exists, data in other pelvic disease sites with concurrent chemotherapy identify

301 IMRT as reducing bowel toxicity.^{76,77} Several series demonstrate a reduction in acute bowel toxicity with the
302 use of IMRT compared with 3-D CRT.^{72,73} When IMRT is used, daily image guidance with cone-beam CT is
303 recommended to verify bladder filling and target localization.^{72,73} Historically, TMT trials incorporated
304 interim treatment response evaluation with cystoscopy during an RT break to avoid exposure of small
305 bowel to additional RT, if a salvage cystectomy was required.^{20,49,51,52,78-80} This practice has been replaced
306 by continuous complete course RT because salvage cystectomy rates have similar complication rates and
307 similar outcomes to upfront cystectomy.^{11,12,49,51,81} While hyperfractionated twice daily RT has been used in
308 clinical trials of localized bladder cancer, once daily RT (with biweekly gemcitabine) showed no difference in
309 3-year metastasis-free survival compared with twice daily RT (with 5-FU/cisplatin) and no difference in
310 OS.^{50,82} Therefore, once daily, continuous course RT remains the preferred RT delivery regimen.

311 The ideal dose and fractionation regimen for patients with localized bladder cancer remains
312 controversial. An individual patient meta-analysis of 2 RCTs found moderately hypofractionated RT (5500
313 cGy in 20 fractions) was superior to conventionally fractionated RT (6400-6480 cGy in 32-36 fractions) for
314 locoregional control with no differences in late GI or genitourinary toxicity.⁶⁷ However, few patients on
315 these trials received hypofractionated RT with concurrent chemotherapy and no patients received pelvic
316 nodal RT, thus limiting the conclusion for patients who receive concurrent chemoradiation or those
317 receiving treatment to the pelvic lymph nodes. Data incorporating hypofractionated RT and concurrent
318 chemotherapy showed similar toxicity compared with conventionally fractionated RT.¹⁵ For patients with
319 T1N0M0 NMIBC and a recurrence despite available intravesical or systemic therapies (or who are not
320 candidates for those options) and decline or are ineligible for cystectomy, a dose of 6120 cGy in 34 fractions
321 to the bladder alone resulted in a 3-year cystectomy-free rate of 88%.¹⁶ Limited data exist on
322 hypofractionated RT for NMIBC.⁸³ One ongoing RCT is investigating the use of immunotherapy with RT (and
323 allows hypofractionated RT) compared with chemoradiation in T1 high-grade NMIBC (NCT06770582).

324 There is insufficient data to support dose escalation beyond 5500 cGy in 20 fractions or 6400 to
325 6480 cGy in 32 to 36 fractions, therefore, these techniques are not recommended outside of a clinical
326 trial.^{15,68-71} A randomised phase II trial of adaptive image-guided standard or dose-escalated tumour boost
327 radiotherapy in the treatment of transitional cell carcinoma of the bladder investigated dose-escalated,
328 adaptive RT in its 2-stage randomization and at 3.5 years follow up, no oncologic benefit was
329 demonstrated; although, there was no signal for increased toxicity.¹⁵ Adaptive techniques may be suitable
330 for patients with bowel anatomy that compromises tumor coverage or for patients with bladder filling
331 challenges. Adaptive RT has been studied for bladder cancer with a plan-of-the-day approach that allows
332 adjustment of the RT plan based on the daily bladder filling variations with a library of preset RT plans.^{15,71,84}
333 A more advanced form of adaptive RT called online adaptive RT uses customized patient-specific treatment
334 plans created in real-time based on CT or MRI visualized patient anatomy and allows for the most accurate

335 plan delivery but has limited data to support routine use in bladder cancer.⁸⁵⁻⁸⁷ There is an ongoing phase III
336 RCT designed to evaluate the utility of adaptive 5-fraction ultrahypofractionated RT compared with
337 moderately hypofractionated RT (both with concurrent chemotherapy) for localized bladder cancer
338 (NCT07097142).

339 Elective treatment of the lymph nodes remains a controversial topic in bladder cancer. There are no
340 validated prospective randomized trial results comparing elective pelvic nodal RT with bladder-only RT.
341 While 3 trials delivered bladder-only RT, many of the RTOG studies used a mini-pelvis field treating from S2-
342 3 junction at mid-sacrum to the lower pole of the obturator foramen using 3-D CRT.^{9,20,23,24,47,79,80} Many of
343 the studies using bladder-only RT demonstrated low rates (~7%) of pelvic nodal recurrences suggesting
344 bladder-only RT is sufficient.^{12,49,67,88} One RCT attempted to compare whole pelvis versus bladder-only RT in
345 node-negative MIBC; however, concerns with the results require careful consideration.^{89,90} A multicenter
346 retrospective Canadian series with inverse probability treatment weighting demonstrated a cancer-specific
347 and OS benefit for whole pelvis RT over bladder only.⁶⁴ Arguments in favor of elective nodal RT for MIBC
348 include high rates of occult pathologic nodal involvement, especially in patients with T3 or T4 primary
349 disease, and low toxicity rates with IMRT when including elective nodes.^{19,91}

350 Most prospective studies in bladder cancer target the whole bladder as a single clinical target
351 volume instead of treating the whole bladder to a lower dose with a higher dose delivered to the
352 tumor/tumor bed (bladder tumor boost).^{7,16,49} Two RCTs investigated whether partial bladder boost would
353 reduce treatment-related toxicity over whole bladder RT.^{12,88} Neither study demonstrated a significant
354 reduction in toxicity with partial bladder boost RT. Despite these results, there remains a strong clinical
355 rationale for its continued use because the majority of recurrences after TMT occur at the original tumor
356 site.^{38,92} Bladder tumor boost may be particularly beneficial where bowel anatomy is dosimetrically
357 unfavorable allowing for a partial bladder boost to best spare dose to the bowel. Careful treatment
358 planning based on patient anatomy is critical to maintain excellent target coverage and minimize dose to
359 neighboring organs at risk ([Tables 5 and 6](#)).

360 Prior RTOG and NRG studies included the prostate in the RT fields for men with bladder cancer
361 based on 3-D CRT treatment planning.⁷ With the use of IMRT, the prostate has not been included in the
362 clinical target volume unless there is prostatic urethral involvement, low-lying bladder tumors located in
363 the bladder neck or trigone, or T4 bladder cancer. For female patients with bladder cancer, proximal
364 urethra should be included in the setting of T4 disease or low-lying tumors in the bladder neck or trigone.

365 Interstitial brachytherapy may be an option as part of a bladder-preserving strategy in carefully
366 selected patients with solitary, small (<5 cm), muscle-invasive T2 tumors without carcinoma in situ.
367 Although not routinely performed, series from specialized European centers have shown good local control,

368 low toxicity, and high rates of bladder preservation when brachytherapy is combined with TURBT and
 369 external beam RT.⁹³⁻⁹⁷

370

371 **Table 5** Guidance on normal tissue goals for conventionally fractionated regimens (1.8 or 2 Gy per
 372 fraction to 64-64.8 Gy, nodes treated to 40-46 Gy)*

Organ/Target	Metric	Primary Goal	Secondary Goal	Deviation	Notes
Rectum	V30 Gy	<50% [†]	≤80% ^{19,23}	>80%	
	V55 Gy	≤10% [†]	≤15% [†]	>15%	
Femoral heads	V45 Gy	≤50% [†]	≤55% [†]	>55%	
	D0.03 cc	≤50 Gy [†]	≤55 Gy [†]	>55%	
Bowel bag	V30 Gy	≤150 cc [†]	170 cc [†]	>170 cc	PTV coverage should be compromised to meet bowel bag, especially small bowel
	V40 Gy	≤130 cc [†]	150 cc [†]	>150 cc	
	V45 Gy	<100 cc [†]	≤139 cc ^{19,23}	>139 cc	
	V50 Gy	<15 cc [†]	≤127 cc ²³	>127 cc	
	D0.03 cc	≤55 Gy	≤57.5 Gy	>57.5 Gy	
PTV	V100 Gy	≥95%	---	<95%	OARs have priority over PTV coverage when close in proximity

373 Abbreviations: PTV = planning target volume; OARs = organs at risk.

374 *This table is a combination of evidence-based constraints and expert opinion.

375 [†]NCT03775265 ([SWOG NRG1806](#)).

376

377

378 **Table 6** Guidance on normal tissue goals for hypofractionation (2.75 Gy per fraction to 55 Gy, nodes
 379 treated to 40-44 Gy)*

Organ/Target	Metric	Primary Goal	Secondary Goal	Deviation	Notes
Rectum	V25 Gy	<80% ²³	≤85% [†]	>85%	
	V41.7 Gy	<60% ²³	≤65%	>65%	
	V50 Gy	<50% ²³	≤55% [†]	>55%	
	V54.2 Gy	<30% ²³	≤35% [†]	>35%	
	V58.3 Gy	<15% ²³	≤20% [†]	>20%	
Femoral heads	V41.7 Gy	≤50% ²³	---	≥50%	
	V44 Gy	≤8 cc ²³	---	>8 cc	
	D0.03 cc	≤47 Gy [†]	>47 to 50 Gy	>50 Gy	
Bowel bag	V37.5 Gy	<116 cc ²³	≤139 cc [†]	>139 cc	
	V41.7 Gy	<104 cc ²³	≤127 cc [†]	>127 cc	
	V45.8 Gy	<91 cc ²³	---	≥91 cc	
	V50 Gy	<73 cc ²³	---	---	
	V54 Gy	<0.03 cc	---	>0.03cc	
PTV	V100 Gy	≥95%	---	<95%	OARs have priority over PTV coverage when close in proximity

380 Abbreviations: PTV = planning target volume; OARs = organs at risk.

381 *This table is a combination of evidence-based constraints and expert opinion.

382 [†]NCT07097142 ([NRG GU015](#)).

383

384

385

3.3. KQ3 Indications, dose-fractionation, and techniques for postoperative RT for nonmetastatic disease (Table 4)

388
 389 See evidence tables in Supplementary Materials, Appendix E4, for the data supporting the
 390 recommendations for KQ3.

391
 392 **What are the indications, appropriate RT techniques (eg, target volumes, modalities, simulation, image**
 393 **guidance), and dose-fractionation regimens for postoperative RT, with or without systemic therapy, for**
 394 **patients with nonmetastatic bladder cancer status postcystectomy or partial cystectomy?**

395
 396 **Table 7** Indications, dose-fractionation, and techniques for postoperative RT for nonmetastatic disease

KQ3 Recommendations	Strength of Recommendation	Quality of Evidence (Refs)
Indications & Timing		
1. For patients with (y)pT3-4M0 or positive margins or (y)pN1-3M0 urothelial carcinoma of the bladder postcystectomy, adjuvant RT is conditionally recommended for locoregional control. <u>Implementation remark:</u> Neobladder reconstruction is not a contraindication for adjuvant RT.	Conditional	High 98-103
2. For patients with (y)pT3-4N0-3M0 pure squamous cell carcinoma of the bladder postcystectomy, adjuvant RT is conditionally recommended for locoregional control.	Conditional	Moderate 101,104
3. For patients with (y)pT3-4N0-3M0 bladder cancer post cystectomy receiving adjuvant immunotherapy and RT, RT is conditionally recommended before or during immunotherapy treatment.	Conditional	Expert Opinion
4. For patients with (y)pT3-4N0-3M0 bladder cancer, initiating adjuvant RT within 2-3 months postcystectomy or within 8 weeks of completing adjuvant chemotherapy is recommended. <u>Implementation remark:</u> Initiating RT up to 4 months postcystectomy is acceptable.	Strong	Moderate 98-101
Volumes		
5. For patients with (y)pT3-4N0-3M0 bladder cancer postcystectomy, pelvic lymph nodes and cystectomy bed should routinely be included when receiving adjuvant RT. <u>Implementation remark:</u> For neobladder diversions or concern for higher risk of bowel toxicity, it is acceptable to omit the cystectomy bed and treat only the pelvic lymph nodes for those with negative margins.	Strong	High 91,98-103,105
Dose-fractionation		
6. For patients with (y)pT3-4N0-3M0 bladder cancer postcystectomy and negative margins, a dose of 4400-5040 cGy in 180-200 cGy fractions is recommended.	Strong	High 98,100

7. For patients with (y)pT3-4N0-3M0 bladder cancer postcystectomy and positive margins receiving a dose of 4400-5040 cGy in 180-200 cGy fractions to the pelvic lymph nodes and cystectomy bed, an SIB to the site of positive margin to a total dose of 5400 cGy is conditionally recommended.	Conditional	Moderate 98
8. For patients with (y)pT3-4N0-3M0 bladder cancer postcystectomy and residual gross disease, an SIB to gross disease is recommended with the dose dependent on normal tissue tolerance. <u>Implementation remark:</u> A BED up to 6400-6480 Gy in 180-200 cGy fractions to gross disease may be an option.	Strong	Low 99
Techniques		
9. For patients with (y)pT3-4N0-3M0 bladder cancer postcystectomy, IMRT (including VMAT) using daily image guidance with cone-beam CT to reduce dose to the rectum, bowel, and urinary diversion is recommended.	Strong	Moderate 98,100,106
10. For patients with (y)pT3-4N0-3M0 bladder cancer postcystectomy receiving adjuvant RT, simulation and treatment with an empty urostomy bag is recommended.	Strong	Low 98,99

397 Abbreviations: BED = biologically equivalent dose; CT= computed tomography; IMRT = intensity modulated radiation
 398 therapy; KQ = key question; RT = radiation therapy; SIB = simultaneous integrated boost; VMAT = volumetric
 399 modulated arc therapy.

400

401 Locoregional failure is relatively high for patients with locally advanced disease post RC, with
 402 approximately one third of patients with (y)pT3-4N0-3 disease developing locoregional failure.^{91,102,103,107}
 403 Importantly, local failures are rarely salvageable, and the morbidity and mortality from local failure is
 404 high.⁹¹ Furthermore, perioperative chemotherapy has not been shown to reduce the risk of locoregional
 405 failure.¹⁰⁷ Consequently, interest in adjuvant RT as a means to reduce pelvic recurrences and potentially
 406 change the patterns of failure postcystectomy has increased.

407 Adjuvant RT has been assessed in 3 RCTs (based on the risk stratification factors previously noted)
 408 with all showing a clinically meaningful and statistically significant improvement in local control with the
 409 addition of adjuvant RT.^{98,100,101} One phase II trial enrolled 120 patients who underwent RC and pelvic lymph
 410 node dissection with negative margins and any of the following: (y)pT3b-4, pathologically node positive, or
 411 grade 3 disease (91% had \geq [y]pT3 disease and 53% had urothelial carcinoma).¹⁰¹ Patients were randomized
 412 to adjuvant chemotherapy versus adjuvant chemotherapy with adjuvant RT. The addition of RT to adjuvant
 413 chemotherapy significantly improved 2-year locoregional failure-free survival (96% vs 69%) with an
 414 improvement in local control seen in the urothelial cohort on subgroup analysis.¹⁰⁰ The follow-up study was
 415 limited to urothelial histology only and showed that adjuvant RT significantly improved local control versus
 416 observation in this RCT.¹⁰⁰ The largest and most recent RCT included patients with nonmetastatic urothelial
 417 carcinoma who had \geq 1 of the following after RC with lymph node dissection: (y)pT3-4, pN1-3, <10 lymph

418 nodes removed, positive margin, or $\geq(y)cT3$ downstaged with neoadjuvant chemotherapy, and reported a
419 statistically significant improvement in the primary endpoint of locoregional failure-free survival.⁹⁸

420 Identifying patients most likely to benefit from adjuvant RT is critical. A risk stratification tool was
421 developed using data from SWOG 8710 and the retrospective experience to help identify patients at
422 highest risk for locoregional recurrence who would benefit most from adjuvant RT.^{107,108} Patients at highest
423 risk included those with $(y)pT3-4$ disease and positive margins or $(y)pT3-4$ disease and <10 lymph nodes
424 removed with 5-year cumulative incidence of local failure of 41%.^{107,108} Patients with intermediate-risk were
425 those with $(y)pT3-4$ disease and ≥10 nodes removed and negative margins with a 5-year local failure rate of
426 19% to 20%.^{107,108} The risk stratification was subsequently validated,^{109,110} however, questions remain on
427 the importance of node-positive disease as an independent predictor of locoregional failure given the high
428 competing risk of distant disease.

429 Based on available prospective and retrospective data, patients most likely to benefit from adjuvant
430 RT are those with $(y)pT3-4$ or node-positive disease or with positive margins.^{91,98-103,105,111-115} When
431 considering whether to offer adjuvant RT to patients with $(y)pT3-4$ disease, the extent of the lymph node
432 dissection has been shown to be an independent factor and can be taken into consideration, with <10
433 nodes removed associated with higher risk of locoregional failure. The extent of lymph node involvement
434 was included in the validated risk stratification tool and was also used as an independent selection criterion
435 in the Bladder Cancer Adjuvant Radiotherapy Trial (BART) trial.⁹⁸

436 Adjuvant RT may be an option for $(y)pT1-2$ disease with a positive margin, though it is relatively
437 rare. There are no data to guide decisions on the use of adjuvant RT after partial cystectomy. However,
438 adjuvant RT may be reasonable in selected cases if the patient meets criteria for adjuvant RT as defined for
439 the RC patient population.¹¹⁶

440 For patients with neobladders, adjuvant RT is not contraindicated with data showing the safety and
441 effectiveness of adjuvant RT in this patient population.¹¹⁷ The timing of adjuvant RT in the setting of a
442 neobladder should take into account the patient's recovery of urinary continence. Close collaboration with
443 urologists to determine optimal timing is important and longer delays (≥3 months) may be appropriate to
444 allow for continence recovery. Referral for pelvic floor physical therapy may also be reasonable.

445 Adjuvant RT is generally contraindicated for patients with bladder cancer who have active
446 inflammatory bowel disease, prior pelvic RT, and ongoing grade ≥2 GI symptoms that do not respond to
447 medical management. For patients with prior prostate-only RT, adjuvant RT may be an option in select
448 cases, though overlap with prior RT should be minimized and the cystectomy bed omitted from the RT field.

449 For patients with pure squamous cell carcinoma (with no urothelial component), adjuvant RT
450 improved local control and disease-free survival in an RCT from Egypt in which 80% of the patients had
451 squamous cell carcinoma.¹¹⁸ An RCT from Egypt randomizing patients to adjuvant RT and adjuvant

452 chemotherapy versus adjuvant chemotherapy alone reported a significant improvement in local control in a
453 cohort in which >40% of the patients had squamous cell carcinoma. Adjuvant RT improved local control in
454 the squamous cell subgroup.¹⁰¹ Given the reduced effectiveness of chemotherapy for squamous cell
455 carcinoma of the bladder relative to urothelial carcinoma, adjuvant RT remains a reasonable option.

456 With the emergence of adjuvant immunotherapy as a treatment option for patients with locally
457 advanced disease after cystectomy, the role of adjuvant RT in addition to immunotherapy should be further
458 studied. Since adjuvant immunotherapy is typically given for a period up to 1 year, it is usually not feasible
459 to delay adjuvant RT until after completion of immunotherapy. Early toxicity results from SWOG/NRG 1806
460 (NCT03775265) have demonstrated the safety and feasibility of this approach for chemoradiation plus
461 immunotherapy for intact bladder cancer.¹¹⁹ Additional research is needed to confirm the safety and
462 efficacy of combination therapy and to determine optimal timing. Given limited data on the toxicity of
463 concurrent adjuvant immunotherapy and RT in the postcystectomy setting, treating patients with adjuvant
464 RT first (when feasible) may be preferred.

465 With respect to the timing of adjuvant RT, the BART trial required that patients start adjuvant RT
466 within 8 weeks of RC or within 8 weeks of completing adjuvant chemotherapy.⁹⁸ The Egyptian trials had
467 similar requirements.^{100,101} Given the recovery from cystectomy in an elderly population, it is reasonable to
468 delay adjuvant RT up to 4 months after cystectomy, though 2 to 3 months after cystectomy is preferred
469 based on expert opinion of the task force.

470 The target volumes for postcystectomy RT should typically include the cystectomy bed and the
471 pelvic lymph nodes up to the aortic bifurcation, including the common iliac, internal/external iliac, and
472 obturator nodes. A patterns of failure analysis reported low rates of cystectomy failures for patients with
473 margin-negative resections with most of the recurrences occurring in the pelvic nodes.⁹¹ Based on this
474 study, the initial NRG consensus contouring atlas recommended omitting the cystectomy bed for patients
475 with margin-negative resections given concerns about the potential toxicity of irradiating the cystectomy
476 bed.¹²⁰ Subsequent studies have reported higher rates of cystectomy bed failures even for margin negative
477 patients. Three trials included the cystectomy bed routinely for all patients and reported low rates of
478 locoregional failure and a favorable toxicity profile.^{98,100,101} Omitting the cystectomy bed is reasonable for
479 patients with neobladders or with a higher risk of GI toxicity if they are margin-negative. Consensus
480 guidelines for contouring the cystectomy bed and pelvic nodes are available.^{120,121}

481 The dose for adjuvant RT is typically 5000 to 5040 cGy in 25 to 28 fractions using conventional
482 fractionation.^{98-100,122} Lower doses (eg, 4400-4500 cGy) can be used for patients where there is greater
483 concern for bowel toxicity/patient tolerance (eg, patients receiving concurrent adjuvant RT and
484 immunotherapy). With the exception of a focal SIB (to positive margin or gross local or nodal disease),
485 there is not sufficient safety/tolerability data to support hypofractionation in the adjuvant setting.⁹⁹

486 Dosimetric studies have shown that IMRT (including volumetric modulated arc therapy can achieve
487 lower doses to the rectum, bowel, and urinary diversion compared with 3-D CRT.¹²³ IMRT is particularly
488 important to limit dose to the urinary diversion (eg, ileal conduit or neobladder). Daily imaging with cone-
489 beam CT is recommended to assess changes in bowel anatomy and confirm safety/efficacy of daily
490 setup.^{98,100,106}

491 For CT simulation, supine position is generally preferred and the urostomy bag should be emptied
492 prior to simulation and each treatment to reduce uncertainty as the beams may go through the urostomy
493 bag, creating a bolus effect on the skin and introducing greater uncertainty with dose delivery to the targets
494 and organs at risk if there is a clinically meaningful volume of urine in the urostomy bag.^{98,99} Similarly, for
495 patients with continent urinary diversions or orthotopic neobladders, emptying the reservoir immediately
496 prior to CT simulation and before each daily treatment session to optimize reproducibility and attempt to
497 minimize toxicity is appropriate.^{98,99}

498

499 **3.4. KQ4: Indications for RT and dose-fractionation for metastatic or**
500 **symptomatic disease (Table 6)**

501

502 *See evidence tables in Supplementary Materials, Appendix E4, for the data supporting the*
503 *recommendations for KQ4 and Fig 2.*

504

505 **What are indications and appropriate dose-fractionation regimens for RT to the bladder or sites of**
506 **metastases for patients with metastatic or symptomatic bladder cancer being treated with noncurative**
507 **intent?**

508

509 **Table 8** Indications for RT and dose-fractionation regimens for metastatic or symptomatic disease

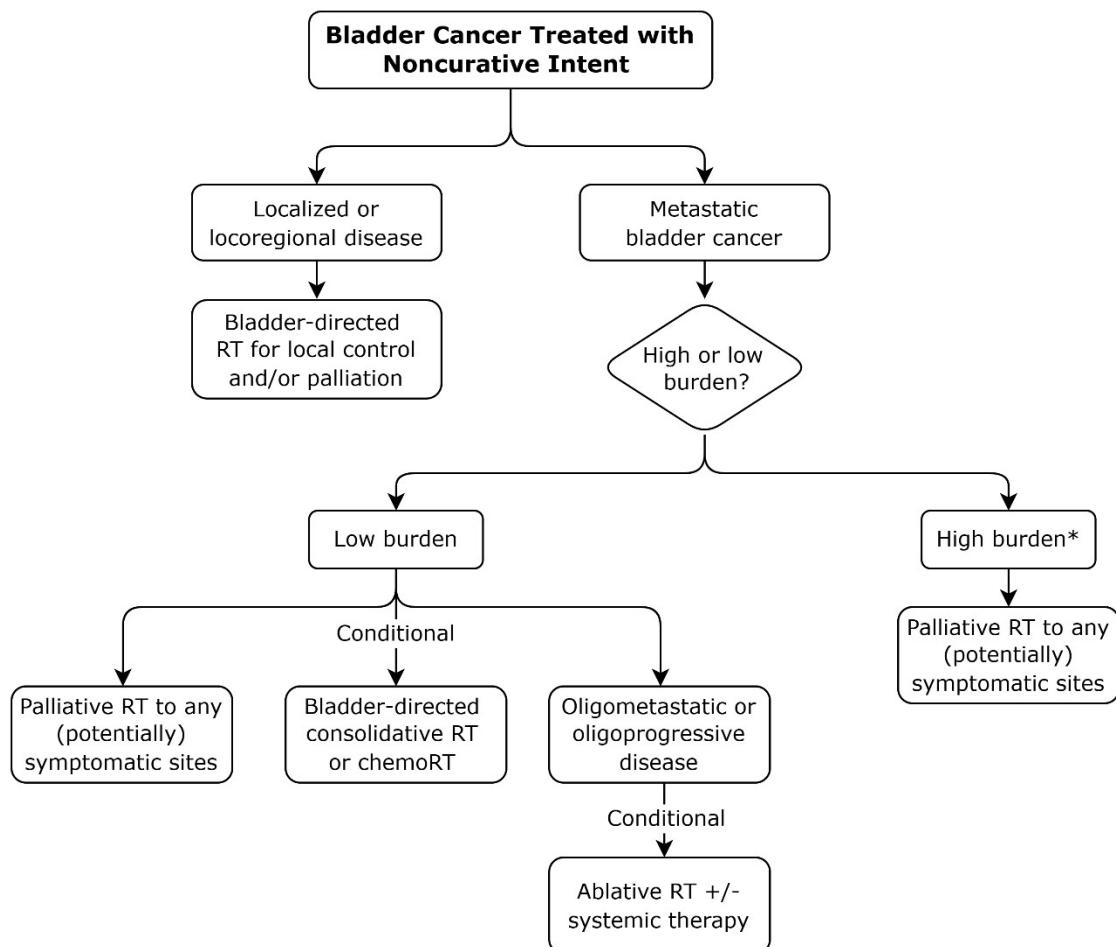
KQ4 Recommendations	Strength of Recommendation	Quality of Evidence (Refs)
<p>1. For patients with (a) high-burden metastatic and locally symptomatic bladder cancer, or (b) localized or locoregional disease being treated with noncurative intent, bladder-directed RT is recommended for local control and/or palliation as follows:</p> <ul style="list-style-type: none">• 2100 cGy in 3 fractions every other day, OR• 3450-3600 cGy in 6 weekly fractions <p><u>Implementation remarks:</u></p> <ul style="list-style-type: none">• Other dose-fractionation regimens may be appropriate depending on clinical scenario.• High burden is defined as ≥ 5 metastatic sites and/or presence of liver metastases.• For locoregional disease treated with noncurative intent, design the RT field to encompass all gross disease.	Strong	Moderate 75,124-129

2. For patients with low-burden metastatic bladder cancer at diagnosis, bladder-directed consolidative RT or chemoradiation with a BED of ≥ 4500 cGy after systemic therapy is conditionally recommended.	Conditional	Low 130-132
<p>Implementation remark: Low burden is defined as <5 metastatic sites other than pelvic lymph nodes and no presence of liver metastases.</p>		
3. For asymptomatic patients with high-burden metastatic bladder cancer, bladder-directed consolidative RT is not recommended.	Strong	Low 132
<p>Implementation remark: High burden is defined as ≥ 5 metastatic sites and/or presence of liver metastases.</p>	Conditional	Low 133-135
4. For patients with low-burden metastatic bladder cancer (oligometastatic or oligoprogressive), ablative RT to metastatic sites, with or without systemic therapy, is conditionally recommended.		
<p>Implementation remark: Low burden is defined as <5 metastatic sites and no presence of liver metastases.</p>		
5. For patients with metastatic bladder cancer being treated with noncurative intent, RT is recommended for palliation of symptomatic or potentially symptomatic metastases following a multidisciplinary, patient-centered discussion.	Strong	Expert Opinion

510 Abbreviations: BED = biologically equivalent dose; KQ = key question; RT = radiation therapy.

511

512 RT is used differently based on metastatic burden of disease, response to initial systemic therapy
 513 and for symptom management ([Figure 2](#)). RT is highly efficacious in palliating or preventing local symptoms
 514 from bladder cancer, including hematuria, dysuria, and irritative bladder symptoms. The only RCT in this
 515 setting, published outside the date range for this guideline's evidence review, established 2100 cGy in 3
 516 fractions every other day as the preferred schedule for local symptom control in bladder cancer.¹³⁶ Six
 517 weekly fractions of 575 to 600 cGy is also effective and well tolerated.^{75,124-129} Other palliative schedules
 518 that can be used based on the clinical context and patient preference include 1 fraction of 600 to 800 cGy, 5
 519 fractions of 400 cGy over 7 days, and 10 fractions of 300 cGy over 14 days. For patients with nonmetastatic
 520 bladder cancer (ie, those with localized or locoregional disease) who are not candidates for curative
 521 treatment (eg, because of age and/or comorbidities), encompassing all gross disease is advised to achieve
 522 durable long-term local or locoregional control.


523 In patients with metastatic bladder cancer, there is increasing interest in the subgroup with low
 524 burden or oligometastatic disease. While not as established for bladder cancer as in other disease sites (eg,
 525 prostate), there is growing evidence that patients with <5 metastases (defined as non-pelvic lymph nodes
 526 or distant metastases) and without liver disease may benefit from a more aggressive local approach, both
 527 to the bladder and metastatic sites.^{137,138} Ablative metastasis-directed RT may be an option, although
 528 evidence is limited.¹³³⁻¹³⁵ Available data do not support specific regimens, but a sufficiently ablative RT dose
 529 and the potential combination with systemic agent(s) is imperative.¹³³⁻¹³⁵

530 Based on limited data in patients with metastatic disease who have responded well to systemic
531 therapy, ablative consolidation RT to the bladder improves OS.¹³⁰⁻¹³² When treating the bladder for
532 consolidation, it is important to prescribe a sufficient dose to the bladder (≥ 4500 cGy biologically equivalent
533 dose) and to examine the possibility of combining RT with a radiosensitizing systemic agent.¹³⁰⁻¹³²

534 For patients with high-burden metastatic disease, defined as ≥ 5 metastases and/or liver disease,
535 there are no data to support ablative RT to the bladder or metastases. While consolidation RT to the
536 bladder in this setting is not recommended,¹³² these patients benefit from palliative RT to the bladder
537 and/or metastatic sites to prevent or alleviate symptoms. There are no data to suggest that patients with
538 bladder cancer and brain metastases benefit less than other cancer patients from RT.¹³⁹ In fact, there is
539 some evidence specific to bladder cancer that clearly supports the use of stereotactic radiosurgery.¹⁴⁰⁻¹⁴²

540

541

542

543 **Figure 2 Management of bladder cancer treated with noncurative intent**

544 Abbreviations: chemoRT = chemoradiation; RT = radiation therapy.

545 *High-burden disease is defined as ≥ 5 metastatic sites and/or presence of liver metastasis.

546

547 4. Conclusions and Future Directions

548 RT is a critical component of bladder cancer care across the spectrum of disease, including
549 definitive TMT, postoperative therapy in high-risk patients, and palliation and symptom control in advanced
550 and metastatic disease. Successful use of RT in these clinical scenarios requires coordinated
551 multidisciplinary care with shared decision making, careful patient selection, and integration with systemic
552 therapy. While the role for RT in bladder cancer has expanded, real-world disparities in treatment access,
553 multidisciplinary care, and clinical trial access continues to exist, highlighting the need for more equitable
554 evidence-based care delivery.¹⁴³⁻¹⁴⁵

555 Several areas of investigation hold promise for future practice. Validation of biomarkers, including
556 circulating tumor DNA, genomic classifiers, and imaging such as multiparametric MRI and PET, may allow
557 for improved staging, risk stratification, personalized treatment selection (including identifying patients
558 most likely to benefit from RT), and posttreatment surveillance. As the systemic therapy landscape in
559 bladder cancer continues to rapidly evolve, further studies are needed to define the optimal integration of
560 immunotherapy (and other novel systemic therapies) with RT, both in the intact and postcystectomy
561 settings. Ongoing trials will further clarify the role of ultrahypofractionation and adaptive RT, and future
562 work should look to further improve access and convenience while decreasing treatment burden.
563 Additionally, the role of metastasis-directed therapy in oligometastatic and oligopressive disease in the
564 setting of improved systemic therapies will require continued study.

565 Future research must also focus on patient-centered outcomes with special emphasis on
566 populations traditionally underrepresented in bladder cancer studies, including female patients.^{144,146}
567 Collection of quality of life metrics and survivorship endpoints will help ensure that any advances in
568 treatment are put into the context of the patient experience.

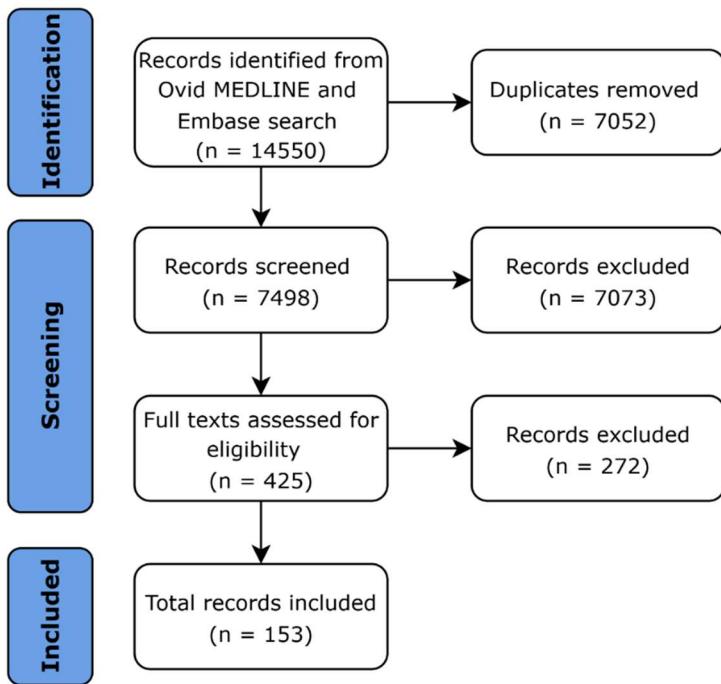
569 These research priorities will further advance our understanding of optimal treatment strategies for
570 a range of patients with bladder cancer while helping ensure continued innovation, improved selection,
571 optimized integration of RT with systemic therapies, and a focus on patient-centered and evidence-based
572 care.

573

574

575 **Disclosures:** All task force members' disclosure statements were reviewed before being invited and were
576 shared with other task force members throughout the guidelines' development. Those disclosures are
577 published within this guideline. Where potential conflicts were detected, remedial measures to address
578 them were taken.

579 **Author 1 (vice chair):** American Board of Radiology (ABR) (hematological malignancy section chair), Johnson
580 & Johnson (consultant-ended 9/2024), MDX Health (consultant-ended 4/2025), Merck (research-PI),
581 Seagen/Astellas (research), UpToDate (consultant), *UroToday* (editor); **Author 2:** Boston Scientific (advisory
582 board, research-PI), National Cancer Institute (NCI) (bladder cancer task force co-chair), Varian (research-PI-
583 ended 5/2024); **Author 3 (American Society of Clinical Oncology [ASCO] representative):** Bayer (honoraria-
584 ended 7/2024), *British Medical Journal* (editor in chief), Cancer Research UK, Elekta, Medical Research
585 Council UK, Prostate Cancer UK, (all research-PI), Merck (honoraria-ended 1/2024), Royal College of
586 Radiologists, UK (academic committee chair); **Author 4:** AstraZeneca (consultant), Bayer (consultant),
587 Tersera (research), Tolmar (research); **Author 5 (chair):** American College of Radiation Oncology (ACRO)
588 (board member), Blue Earth Diagnostics (consultant), Boston Scientific (consultant), Clarity Pharmaceuticals
589 (consultant-ended 5/2024), Johnson & Johnson (consultant-ended 2/2025), Lantheus (consultant-ended
590 10/2023), Massachusetts Prostate Cancer Coalition (board member), MDX Health (consultant-ended
591 4/2025), NCI (GU steering committee co-chair), NRG Oncology (genitourinary committee vice chair),
592 Radiation Oncology Institute (vice president, board member); **Author 6 (Society for Urologic Oncology
593 [SUO] representative):** ImmunoBio (consultant), Seagen (research); **Author 7 (American Urological
594 Association [AUA] representative):** American Board of Urology (trustee), AUA (bladder cancer guideline
595 chair), MoKan Labs (ownership equity); **Author 8 (ASCO representative):** AstraZeneca (research), Bristol
596 Myers Squibb (research), Big Ten Cancer Research Consortium (chief scientific officer), Bristol Myers Squibb
597 Foundation (research grant), Caris LifeSciences (travel), Curio Sciences (consultant), Eisai (consultant-ended
598 2/2025), IDEAology Health (consultant-ended 8/2025), OncLive (education); **Author 9 (AUA
599 representative):** Boston Scientific (education), eGene (consultant), Tsumara (consultant, research), Jessica
600 Health (advisory board, stock); **Author 10 (SUO representative):** Ferring (consultant-ended 3/2024), Urogen
601 (consultant); **Author 11 (Guideline Subcommittee representative):** ACRO (board member); **Author 12:**
602 Department of Veteran's Affairs (research-PI); **Author 13:** Varian (honoraria); **Author 14 (EAU
603 representative):** Astellas, AstraZeneca, Bristol Myers Squibb (all research), EAU (muscle invasive bladder
604 cancer guideline chair), Merck (consultant-ended 4/2024); **Author 15:** American Cancer Society (research-
605 PI), ACRO (consultant), American Radium Society (genitourinary group, vice chair), *International Journal of
606 Radiation Oncology, Biology, and Physics* (associate editor). **Author 16 (ASCO representative), Author 17,
607 Author 18 (European Society for Radiotherapy and Oncology representative), Author 19, Author 20,
608 Author 21, and Author 22 reported no disclosures.**


609 5. Acknowledgments

610 The task force thanks the National Institutes of Health Library biomedical librarians, XX and XX, for
611 conducting the literature searches for this guideline; and Resident 1 (lead resident), Resident 2, Resident 3,
612 Resident 4, and Resident 5 for literature review assistance. The task force also thanks the peer reviewers

613 for their comments and time spent reviewing the guideline. See [Appendix E1](#) for their names and
614 disclosures.

615

Identification of studies via databases and registers

616

617 **PRISMA** 2020 study selection diagram^{147,148}

618 Abbreviation: PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

619

620 References

- 621 1. Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical Practice Guidelines.
622 In: Graham R, Mancher, M, Miller Wolman, D, et al. *Clinical Practice Guidelines We Can Trust*. Washington
623 (DC): National Academies Press (US); 2011.
- 624 2. Institute of Medicine (US) Committee on Standards for Systematic Reviews of Comparative Effectiveness
625 Research; Eden J LL, Berg A, et al. *Finding What Works in Health Care: Standards for Systematic Reviews*.
626 Washington (DC): National Academies Press (US); 2011.
- 627 3. Cancer Facts & Figures 2025. American Cancer Society. <https://www.cancer.org/cancer/types/bladder-cancer/about/key-statistics.html>. Published 2025. Accessed 2/18/2025, 2025.
- 628 4. Gray PJ, Fedewa SA, Shipley WU, et al. Use of potentially curative therapies for muscle-invasive bladder
629 cancer in the United States: results from the National Cancer Data Base. *Eur Urol*. 2013;63(5):823-829.
- 630 5. Moon S, Pandya V, McDonald A, Basu A, Bae S, Ferguson JE, 3rd. Analysis of treatment of muscle invasive
631 bladder cancer using the national cancer database: Factors associated with receipt of aggressive therapy. *Urol
632 Oncol*. 2023;41(11):456.e413-456.e420.
- 633 6. Efstathiou JA, Spiegel DY, Shipley WU, et al. Long-term outcomes of selective bladder preservation by
634 combined-modality therapy for invasive bladder cancer: the MGH experience. *Eur Urol*. 2012;61(4):705-711.

636 7. Mak RH, Hunt D, Shipley WU, et al. Long-term outcomes in patients with muscle-invasive bladder cancer after
637 selective bladder-preserving combined-modality therapy: a pooled analysis of Radiation Therapy Oncology
638 Group protocols 8802, 8903, 9506, 9706, 9906, and 0233. *J Clin Oncol.* 2014;32(34):3801-3809.

639 8. Kamran SC, Efstathiou JA. The Legacy of RTOG/NRG Protocols in Shaping Current Bladder Preservation
640 Therapy in North America. *Semin Radiat Oncol.* 2023;33(1):26-34.

641 9. Hall E, Hussain SA, Porta N, et al. Chemoradiotherapy in Muscle-invasive Bladder Cancer: 10-yr Follow-up of
642 the Phase 3 Randomised Controlled BC2001 Trial. *Eur Urol.* 2022;82(3):273-279.

643 10. Singh P, Ballas L, Sonpavde GP, et al. Eligibility and Endpoints for Clinical Trials in Trimodality Therapy for
644 Bladder Cancer. *Bladder Cancer.* 2024;10(3):199-213.

645 11. Zlotta AR, Ballas LK, Niemierko A, et al. Radical cystectomy versus trimodality therapy for muscle-invasive
646 bladder cancer: a multi-institutional propensity score matched and weighted analysis. *Lancet Oncol.*
647 2023;24(6):669-681.

648 12. James ND, Hussain SA, Hall E, et al. Radiotherapy with or without chemotherapy in muscle-invasive bladder
649 cancer. *N Engl J Med.* 2012;366(16):1477-1488.

650 13. Kulkarni GS, Hermanns T, Wei Y, et al. Propensity Score Analysis of Radical Cystectomy Versus Bladder-
651 Sparing Trimodal Therapy in the Setting of a Multidisciplinary Bladder Cancer Clinic. *J Clin Oncol.*
652 2017;35(20):2299-2305.

653 14. Giacalone NJ, Shipley WU, Clayman RH, et al. Long-term Outcomes After Bladder-preserving Tri-modality
654 Therapy for Patients with Muscle-invasive Bladder Cancer: An Updated Analysis of the Massachusetts General
655 Hospital Experience. *Eur Urol.* 2017;71(6):952-960.

656 15. Huddart R, Hafeez S, Griffin C, et al. Dose-escalated Adaptive Radiotherapy for Bladder Cancer: Results of the
657 Phase 2 RAIDER Randomised Controlled Trial. *Eur Urol.* 2024;60-70.

658 16. Dahl DM, Rodgers JP, Shipley WU, et al. Bladder-Preserving Trimodality Treatment for High-Grade T1 Bladder
659 Cancer: Results From Phase II Protocol NRG Oncology/RTOG 0926. *J Clin Oncol.* 2024;42(34):4095-4102.

660 17. Swinton M, Mariam NBG, Tan JL, et al. Bladder-Sparing Treatment With Radical Dose Radiotherapy Is an
661 Effective Alternative to Radical Cystectomy in Patients With Clinically Node-Positive Nonmetastatic Bladder
662 Cancer. *J Clin Oncol.* 2023;41(27):4406-4415.

663 18. Joshi M, Tuanquin L, Zhu J, et al. Concurrent durvalumab and radiation therapy (DUART) followed by adjuvant
664 durvalumab in patients with localized urothelial cancer of bladder: results from phase II study, BTCRC-GU15-
665 023. *J Immunother Cancer.* 2023;11(2).

666 19. Tan MP, Harris V, Warren-Oseni K, et al. The Intensity-Modulated Pelvic Node and Bladder Radiotherapy
667 (IMPART) Trial: A Phase II Single-Centre Prospective Study. *Clin Oncol (R Coll Radiol).* 2020;32(2):93-100.

668 20. Coen JJ, Zhang P, Saylor PJ, et al. Bladder Preservation With Twice-a-Day Radiation Plus Fluorouracil/Cisplatin
669 or Once Daily Radiation Plus Gemcitabine for Muscle-Invasive Bladder Cancer: NRG/RTOG 0712-A
670 Randomized Phase II Trial. *J Clin Oncol.* 2019;37(1):44-51.

671 21. Caffo O, Thompson C, De Santis M, et al. Concurrent gemcitabine and radiotherapy for the treatment of
672 muscle-invasive bladder cancer: A pooled individual data analysis of eight phase I-II trials. *Radiother Oncol.*
673 2016;121(2):193-198.

674 22. Hoskin PJ, Rojas AM, Saunders MI, Bentzen SM, Motohashi KJ. Carbogen and nicotinamide in locally advanced
675 bladder cancer: early results of a phase-III randomized trial. *Radiother Oncol.* 2009;91(1):120-125.

676 23. Huddart R, Hafeez S, Omar A, et al. Acute Toxicity of Hypofractionated and Conventionally Fractionated
677 (Chemo)Radiotherapy Regimens for Bladder Cancer: An Exploratory Analysis from the RAIDER Trial. *Clin Oncol (R Coll Radiol).* 2023;35(9):586-597.

678 24. Song YP, Mistry H, Irlam J, et al. Long-Term Outcomes of Radical Radiation Therapy with Hypoxia Modification
679 with Biomarker Discovery for Stratification: 10-Year Update of the BCON (Bladder Carbogen Nicotinamide)
680 Phase 3 Randomized Trial (ISRCTN45938399). *Int J Radiat Oncol Biol Phys.* 2021;110(5):1407-1415.

681 25. Kimura T, Ishikawa H, Nagumo Y, et al. Efficacy and Safety of Bladder Preservation Therapy in Combination
682 with Atezolizumab and Radiation Therapy (BPT-ART) for Invasive Bladder Cancer: Interim Analysis from a
683 Multicenter, Open-label, Prospective Phase 2 Trial. *Int J Radiat Oncol Biol Phys.* 2023;117(3):644-651.

684 26. Weickhardt A, Foroudi F, Lawrentschuk N, et al. Pembrolizumab with Chemoradiation as Treatment for
685 Muscle-invasive Bladder Cancer: Analysis of Safety and Efficacy of the PCR-MIB Phase 2 Clinical Trial (ANZUP
686 1502). *Eur Urol Oncol.* 2024;7(3):469-477.

687 27. Vaishampayan UN, Heilbrun L, Vaishampayan N, et al. Phase II Trial of Concurrent Nivolumab and Radiation
688 Therapy for Muscle-Invasive Bladder Cancer of Older or Chemotherapy-Ineligible Patients. *Int J Radiat Oncol
689 Biol Phys.* 2024;118(5):1472-1480.

691 28. Kool R, Marcq G, Breau RH, et al. Radiation-based Therapy for Muscle-invasive Bladder Cancer: Contemporary
692 Outcomes Across Tertiary Centers. *Eur Urol Oncol*. 2023;6(6):597-603.

693 29. Kool R, Dragomir A, Kulkarni GS, et al. Benefit of Neoadjuvant Cisplatin-based Chemotherapy for Invasive
694 Bladder Cancer Patients Treated with Radiation-based Therapy in a Real-world Setting: An Inverse Probability
695 Treatment Weighted Analysis. *Eur Urol Oncol*. 2024;7(6):1350-1357.

696 30. Cho SW, Lim SH, Kwon GY, et al. Neoadjuvant Cisplatin-Based Chemotherapy Followed by Selective Bladder
697 Preservation Chemoradiotherapy in Muscle-Invasive Urothelial Carcinoma of the Bladder: Post Hoc Analysis
698 of Two Prospective Studies. *Cancer Res Treat*. 2024;56(3):893-897.

699 31. Hussain SA, Porta N, Hall E, et al. Outcomes in Patients with Muscle-invasive Bladder Cancer Treated with
700 Neoadjuvant Chemotherapy Followed by (Chemo)radiotherapy in the BC2001 Trial. *Eur Urol*. 2021;79(2):307-
701 315.

702 32. Khaled HM, Shafik HE, Zabhloul MS, et al. Gemcitabine and cisplatin as neoadjuvant chemotherapy for
703 invasive transitional and squamous cell carcinoma of the bladder: effect on survival and bladder preservation.
704 *Clin Genitourin Cancer*. 2014;12(5):e233-240.

705 33. Hafeez S, Horwich A, Omar O, et al. Selective organ preservation with neo-adjuvant chemotherapy for the
706 treatment of muscle invasive transitional cell carcinoma of the bladder. *Br J Cancer*. 2015;112(10):1626-1635.

707 34. Ajib K, Tjong MC, Tan GH, et al. Canadian experience of neoadjuvant chemotherapy on bladder recurrences in
708 patients managed with trimodal therapy for muscle-invasive bladder cancer. *Can Urol Assoc J*.
709 2020;14(12):404-410.

710 35. Zapatero A, Martin De Vidales C, Arellano R, et al. Long-term results of two prospective bladder-sparing
711 trimodality approaches for invasive bladder cancer: neoadjuvant chemotherapy and concurrent radio-
712 chemotherapy. *Urology*. 2012;80(5):1056-1062.

713 36. Avolio PP, Kool R, Shayegan B, et al. Effect of Complete Transurethral Resection on Oncologic Outcomes After
714 Radiation Therapy for Muscle-Invasive Bladder Cancer. *Int J Radiat Oncol Biol Phys*. 2024;121(2):317-324.

715 37. Büchser D, Zapatero A, Rogado J, et al. Long-term Outcomes and Patterns of Failure Following Trimodality
716 Treatment With Bladder Preservation for Invasive Bladder Cancer. *Urology*. 2019;124:183-190.

717 38. Abdel-Aty H, Warren-Oseni K, Bagherzadeh-Akbari S, et al. Mapping Local Failure Following Bladder
718 Radiotherapy According to Dose. *Clin Oncol (R Coll Radiol)*. 2022;34(10):e421-e429.

719 39. Choueiri TK, Jacobus S, Bellmunt J, et al. Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and
720 cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and
721 biomarker correlates. *J Clin Oncol*. 2014;32(18):1889-1894.

722 40. Plimack ER, Hoffman-Censits JH, Viterbo R, et al. Accelerated methotrexate, vinblastine, doxorubicin, and
723 cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: results of
724 a multicenter phase II study with molecular correlates of response and toxicity. *J Clin Oncol*.
725 2014;32(18):1895-1901.

726 41. de Haar-Holleman A, van Hoogstraten LMC, Hulshof M, et al. Chemoradiation for muscle-invasive bladder
727 cancer using 5-fluorouracil versus capecitabine: A nationwide cohort study. *Radiother Oncol*.
728 2023;183:109584.

729 42. Kobayashi K, Matsumoto H, Misumi T, et al. The efficacy of trimodal chemoradiotherapy with gemcitabine
730 and cisplatin as a bladder-preserving strategy for the treatment of muscle-invasive bladder cancer: a single-
731 arm phase II study. *Jpn J Clin Oncol*. 2022;52(10):1201-1207.

732 43. Krasnow RE, Drumm M, Roberts HJ, et al. Clinical Outcomes of Patients with Histologic Variants of Urothelial
733 Cancer Treated with Trimodality Bladder-sparing Therapy. *Eur Urol*. 2017;72(1):54-60.

734 44. Halstuch D, Kool R, Marcq G, et al. The Impact of Histologic Subtypes on Clinical Outcomes After Radiation-
735 Based Therapy for Muscle-Invasive Bladder Cancer. *J Urol*. 2024;212(5):710-719.

736 45. Christodoulou M, Reeves KJ, Hodgson C, et al. Outcomes of radiosensitisation in elderly patients with
737 advanced bladder cancer. *Radiother Oncol*. 2018;129(3):499-506.

738 46. Huddart RA, Birtle A, Maynard L, et al. Clinical and patient-reported outcomes of SPARE - a randomised
739 feasibility study of selective bladder preservation versus radical cystectomy. *BJU Int*. 2017;120(5):639-650.

740 47. Kaufman DS, Winter KA, Shipley WU, et al. Phase I-II RTOG study (99-06) of patients with muscle-invasive
741 bladder cancer undergoing transurethral surgery, paclitaxel, cisplatin, and twice-daily radiotherapy followed
742 by selective bladder preservation or radical cystectomy and adjuvant chemotherapy. *Urology*.
743 2009;73(4):833-837.

744 48. Choudhury A, Swindell R, Logue JP, et al. Phase II study of conformal hypofractionated radiotherapy with
745 concurrent gemcitabine in muscle-invasive bladder cancer. *J Clin Oncol*. 2011;29(6):733-738.

746 49. Hoskin PJ, Rojas AM, Bentzen SM, Saunders MI. Radiotherapy with concurrent carbogen and nicotinamide in
747 bladder carcinoma. *J Clin Oncol.* 2010;28(33):4912-4918.

748 50. Coen JJ, Rodgers JP, Saylor PJ, et al. Long-Term Results of Bladder Preservation With Twice-Daily Radiation
749 Plus 5-Fluorouracil/Cisplatin or Daily Radiation Plus Gemcitabine for Muscle-Invasive Bladder Cancer-Updated
750 Report of NRG/RTOG 0712: A Randomized Phase 2 Trial. *Int J Radiat Oncol Biol Phys.* 2025;121(1):153-161.

751 51. Michaelson MD, Hu C, Pham HT, et al. A Phase 1/2 Trial of a Combination of Paclitaxel and Trastuzumab With
752 Daily Irradiation or Paclitaxel Alone With Daily Irradiation After Transurethral Surgery for Noncystectomy
753 Candidates With Muscle-Invasive Bladder Cancer (Trial NRG Oncology RTOG 0524). *Int J Radiat Oncol Biol
754 Phys.* 2017;97(5):995-1001.

755 52. Mitin T, Hunt D, Shipley WU, et al. Transurethral surgery and twice-daily radiation plus paclitaxel-cisplatin or
756 fluorouracil-cisplatin with selective bladder preservation and adjuvant chemotherapy for patients with
757 muscle invasive bladder cancer (RTOG 0233): a randomised multicentre phase 2 trial. *Lancet Oncol.*
758 2013;14(9):863-872.

759 53. Dahl DM, Garrison TG, Michaelson MD, et al. Long-term Outcomes of Chemoradiation for Muscle-invasive
760 Bladder Cancer in Noncystectomy Candidates. Final Results of NRG Oncology RTOG 0524-A Phase 1/2 Trial of
761 Paclitaxel + Trastuzumab with Daily Radiation or Paclitaxel Alone with Daily Irradiation. *Eur Urol Oncol.*
762 2024;7(1):83-90.

763 54. Panebianco V, Narumi Y, Altun E, et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer:
764 Development of VI-RADS (Vesical Imaging-Reporting And Data System). *Eur Urol.* 2018;74(3):294-306.

765 55. Muin D, Laukhina E, Hacker M, Shariat SF. PET in bladder cancer imaging. *Curr Opin Urol.* 2023;33(3):206-
766 210.

767 56. Janopaul-Naylor JR, Zhong J, Liu Y, et al. Bladder preserving chemoradiotherapy compared to surgery for
768 variants of urothelial carcinoma and other tumors types involving the bladder: An analysis of the National
769 Cancer Database. *Clin Transl Radiat Oncol.* 2021;26:30-34.

770 57. Roy C, Choudhury KB, Ghosh A, Saha A, Joarder R, Akhil SP. Feasibility of organ preservation in muscle-
771 invasive transitional cell carcinoma bladder: A single institutional approach. *Clinical Cancer Investigation
772 Journal.* 2015;4(2):175-182.

773 58. De Santis M, Bachner M, Cerveny M, et al. Combined chemoradiotherapy with gemcitabine in patients with
774 locally advanced inoperable transitional cell carcinoma of the urinary bladder and/or in patients ineligible for
775 surgery: a phase I trial. *Ann Oncol.* 2014;25(9):1789-1794.

776 59. Mohamed HAH, Salem MA, Elnaggar MS, Gabr A, Abdelrheem AM. Trimodalities for bladder cancer in elderly:
777 Transurethral resection, hypofractionated radiotherapy and gemcitabine. *Cancer Radiother.* 2018;22(3):236-
778 240.

779 60. Voskuilen CS, van de Kamp MW, Schuring N, et al. Radiation with concurrent radiosensitizing capecitabine
780 tablets and single-dose mitomycin-C for muscle-invasive bladder cancer: A convenient alternative to 5-
781 fluorouracil. *Radiother Oncol.* 2020;150:275-280.

782 61. Griffiths G, Hall R, Sylvester R, Raghavan D, Parmar MK. International phase III trial assessing neoadjuvant
783 cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results
784 of the BA06 30894 trial. *J Clin Oncol.* 2011;29(16):2171-2177.

785 62. Advanced Bladder Cancer Meta-analysis C. Neoadjuvant chemotherapy in invasive bladder cancer: update of
786 a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-
787 analysis collaboration. *Eur Urol.* 2005;48(2):202-205; discussion 205-206.

788 63. Riveros C, Ranganathan S, Haque W, et al. Comparative real-world survival outcomes of muscle-invasive
789 bladder cancer treated with bladder-only vs. whole-pelvis concurrent chemoradiation. *Can Urol Assoc J.*
790 2024;18(2):17-24.

791 64. Marcq G, Kool R, Dragomir A, et al. Benefit of Whole-Pelvis Radiation for Patients With Muscle-Invasive
792 Bladder Cancer: An Inverse Probability Treatment Weighted Analysis. *J Clin Oncol.* 2025;43(3):308-317.

793 65. Patel SA, Liu Y, Solanki AA, et al. Bladder only versus bladder plus pelvic lymph node chemoradiation for
794 muscle-invasive bladder cancer. *Urol Oncol.* 2023;41(7):325.e315-325.e323.

795 66. Nakata M, Shimbo T, Kihara A, et al. Optimisation of Radiation Therapy in Bladder Preservation Therapy for
796 Patients With Clinical Stage T2N0M0 Bladder Cancer. *Clin Oncol (R Coll Radiol).* 2022;34(10):e430-e436.

797 67. Choudhury A, Porta N, Hall E, et al. Hypofractionated radiotherapy in locally advanced bladder cancer: an
798 individual patient data meta-analysis of the BC2001 and BCON trials. *Lancet Oncol.* 2021;22(2):246-255.

799 68. Korpics M, Block AM, Altoos B, et al. Maximizing survival in patients with muscle-invasive bladder cancer
800 undergoing curative bladder-preserving radiotherapy: the impact of radiotherapy dose escalation. *Journal of*
801 *Radiation Oncology*. 2017;6(4):387-395.

802 69. Murthy V, Masodkar R, Kalyani N, et al. Clinical Outcomes With Dose-Escalated Adaptive Radiation Therapy
803 for Urinary Bladder Cancer: A Prospective Study. *Int J Radiat Oncol Biol Phys*. 2016;94(1):60-66.

804 70. Murthy V, Gupta P, Baruah K, et al. Adaptive Radiotherapy for Carcinoma of the Urinary Bladder: Long-term
805 Outcomes With Dose Escalation. *Clin Oncol (R Coll Radiol)*. 2019;31(9):646-652.

806 71. Hafeez S, Warren-Oseni K, Jones K, et al. Bladder Tumor-Focused Adaptive Radiation Therapy: Clinical
807 Outcomes of a Phase I Dose Escalation Study. *Int J Radiat Oncol Biol Phys*. 2025;121(1):165-175.

808 72. Lutkenhaus LJ, van Os RM, Bel A, Hulshof MC. Clinical results of conformal versus intensity-modulated
809 radiotherapy using a focal simultaneous boost for muscle-invasive bladder cancer in elderly or medically unfit
810 patients. *Radiat Oncol*. 2016;11:45.

811 73. Søndergaard J, Holmberg M, Jakobsen AR, Agerbæk M, Muren LP, Høyer M. A comparison of morbidity
812 following conformal versus intensity-modulated radiotherapy for urinary bladder cancer. *Acta Oncol*.
813 2014;53(10):1321-1328.

814 74. Meijer GI, van der Toorn PP, Bal M, Schuring D, Weterings J, de Wildt M. High precision bladder cancer
815 irradiation by integrating a library planning procedure of 6 prospectively generated SIB IMRT plans with
816 image guidance using lipiodol markers. *Radiother Oncol*. 2012;105(2):174-179.

817 75. Hafeez S, McDonald F, Lalondrelle S, et al. Clinical Outcomes of Image Guided Adaptive Hypofractionated
818 Weekly Radiation Therapy for Bladder Cancer in Patients Unsuitable for Radical Treatment. *Int J Radiat Oncol*
819 *Biol Phys*. 2017;98(1):115-122.

820 76. Kachnic LA, Winter KA, Myerson RJ, et al. Long-Term Outcomes of NRG Oncology/RTOG 0529: A Phase 2
821 Evaluation of Dose-Painted Intensity Modulated Radiation Therapy in Combination With 5-Fluorouracil and
822 Mitomycin-C for the Reduction of Acute Morbidity in Anal Canal Cancer. *Int J Radiat Oncol Biol Phys*.
823 2022;112(1):146-157.

824 77. Yeung AR, Pugh SL, Klopp AH, et al. Improvement in Patient-Reported Outcomes With Intensity-Modulated
825 Radiotherapy (RT) Compared With Standard RT: A Report From the NRG Oncology RTOG 1203 Study. *J Clin*
826 *Oncol*. 2020;38(15):1685-1692.

827 78. Shipley WU, Winter KA, Kaufman DS, et al. Phase III trial of neoadjuvant chemotherapy in patients with
828 invasive bladder cancer treated with selective bladder preservation by combined radiation therapy and
829 chemotherapy: initial results of Radiation Therapy Oncology Group 89-03. *J Clin Oncol*. 1998;16(11):3576-
830 3583.

831 79. Kaufman DS, Winter KA, Shipley WU, et al. The initial results in muscle-invading bladder cancer of RTOG 95-
832 06: phase I/II trial of transurethral surgery plus radiation therapy with concurrent cisplatin and 5-fluorouracil
833 followed by selective bladder preservation or cystectomy depending on the initial response. *Oncologist*.
834 2000;5(6):471-476.

835 80. Hagan MP, Winter KA, Kaufman DS, et al. RTOG 97-06: initial report of a phase I-II trial of selective bladder
836 conservation using TURBT, twice-daily accelerated irradiation sensitized with cisplatin, and adjuvant MCV
837 combination chemotherapy. *Int J Radiat Oncol Biol Phys*. 2003;57(3):665-672.

838 81. Ramani VA, Maddineni SB, Grey BR, Clarke NW. Differential complication rates following radical cystectomy in
839 the irradiated and nonirradiated pelvis. *Eur Urol*. 2010;57(6):1058-1063.

840 82. Horwich A, Dearnaley D, Huddart R, et al. A randomised trial of accelerated radiotherapy for localised invasive
841 bladder cancer. *Radiother Oncol*. 2005;75(1):34-43.

842 83. Hahn NM, O'Donnell MA, Efstathiou JA, et al. A Phase 1 Trial of Durvalumab in Combination with Bacillus
843 Calmette-Guerin (BCG) or External Beam Radiation Therapy in Patients with BCG-unresponsive Non-muscle-
844 Invasive Bladder Cancer: The Hoosier Cancer Research Network GU16-243 ADAPT-BLADDER Study. *Eur Urol*.
845 2023;83(6):486-494.

846 84. Krishnan A, Maitre P, Kashid S, et al. Online Adaptive Radiation Therapy for Bladder Preservation:
847 Transitioning to Hypofractionation. *Int J Radiat Oncol Biol Phys*. 2025;122(4):995-1001.

848 85. Azzarouali S, Goudschaal K, Visser J, et al. Online adaptive radiotherapy for bladder cancer using a
849 simultaneous integrated boost and fiducial markers. *Radiat Oncol*. 2023;18(1):165.

850 86. Chiodo C, Nasser N, Polce SA, et al. Hypofractionated Online Adaptive Radiotherapy for a Personalized
851 Approach to Muscle Invasive Bladder Cancer. *International Journal of Radiation Oncology*Biology*Physics*.
852 2025;123(1, Supplement):e18-e19.

853 87. Jain S, Peterson JS, Semenenko V, Redler G, Grass GD. Implementation of Cone Beam Computed
854 Tomography-Guided Online Adaptive Radiotherapy for Challenging Trimodal Therapy in Bladder Preservation:
855 A Report of Two Cases. *Cureus*. 2024;16(8):e66993.

856 88. Huddart R, Hafeez S, Griffin C, et al. Dose-escalated Adaptive Radiotherapy for Bladder Cancer: Results of the
857 Phase 2 RAIDER Randomised Controlled Trial. *Eur Urol*. 2025;87(1):60-70.

858 89. Tunio MA, Hashmi A, Qayyum A, Mohsin R, Zaeem A. Whole-pelvis or bladder-only chemoradiation for lymph
859 node-negative invasive bladder cancer: single-institution experience. *Int J Radiat Oncol Biol Phys*.
860 2012;82(3):e457-462.

861 90. Zietman AL. Expression of Editorial Concern: Tunio MA, Hashmi A, Qayyum A, et al. Whole-pelvis or bladder-
862 only chemoradiation for lymph node-negative invasive bladder cancer: Single-institution experience. *Int J
863 Radiat Oncol Biol Phys*. 2012;82:e457-e462. *Int J Radiat Oncol Biol Phys*. 2021;111(4):1094.

864 91. Baumann BC, Guzzo TJ, He J, et al. Bladder cancer patterns of pelvic failure: implications for adjuvant
865 radiation therapy. *Int J Radiat Oncol Biol Phys*. 2013;85(2):363-369.

866 92. Whitmill MA, Anderson BM, Repka MC, et al. Characterizing Failure after Trimodality Therapy in Bladder
867 Cancer: A Retrospective Analysis of Clinical, Spatial and Dosimetric Factors. *International Journal of Radiation
868 Oncology*Biology*Physics*. 2024;120(2, Supplement):e596-e597.

869 93. Pos F, Horenblas S, Dom P, Moonen L, Bartelink H. Organ preservation in invasive bladder cancer:
870 brachytherapy, an alternative to cystectomy and combined modality treatment? *Int J Radiat Oncol Biol Phys*.
871 2005;61(3):678-686.

872 94. Koning CCE, Blank L, Koedooder C, et al. Brachytherapy after external beam radiotherapy and limited surgery
873 preserves bladders for patients with solitary pT1-pT3 bladder tumors. *Ann Oncol*. 2012;23(11):2948-2953.

874 95. Van der Steen-Banasik EM, Visser AG, Reinders JG, et al. Saving bladders with brachytherapy: implantation
875 technique and results. *Int J Radiat Oncol Biol Phys*. 2002;53(3):622-629.

876 96. van der Steen-Banasik E, Ploeg M, Witjes JA, et al. Brachytherapy versus cystectomy in solitary bladder
877 cancer: a case control, multicentre, East-Netherlands study. *Radiother Oncol*. 2009;93(2):352-357.

878 97. Voskuilen CS, Bosschieter J, van Werkhoven E, et al. Long-term survival and complications following bladder-
879 preserving brachytherapy in patients with cT1-T2 bladder cancer. *Radiother Oncol*. 2019;141:130-136.

880 98. Murthy V, Maitre P, Bakshi G, et al. Bladder Adjuvant Radiation Therapy (BART): Acute and Late Toxicity From
881 a Phase III Multicenter Randomized Controlled Trial. *Int J Radiat Oncol Biol Phys*. 2024;121(3):728-736.

882 99. Fonteyne V, Dirix P, Van Praet C, et al. Adjuvant Radiotherapy After Radical Cystectomy for Patients with
883 High-risk Muscle-invasive Bladder Cancer: Results of a Multicentric Phase II Trial. *Eur Urol Focus*.
884 2022;8(5):1238-1245.

885 100. Zaghoul MS, Alnagmy AK, Kasem HA, et al. The Value and Safety of Adjuvant Radiation Therapy After Radical
886 Cystectomy in Locally Advanced Urothelial Bladder Cancer: A Controlled Randomized Study. *Int J Radiat Oncol
887 Biol Phys*. 2024;120(3):658-666.

888 101. Zaghoul MS, Christodouleas JP, Smith A, et al. Adjuvant Sandwich Chemotherapy Plus Radiotherapy vs
889 Adjuvant Chemotherapy Alone for Locally Advanced Bladder Cancer After Radical Cystectomy: A Randomized
890 Phase 2 Trial. *JAMA Surg*. 2018;153(1):e174591.

891 102. Murthy V, Bakshi G, Manjali JJ, et al. Locoregional recurrence after cystectomy in muscle invasive bladder
892 cancer: Implications for adjuvant radiotherapy. *Urol Oncol*. 2021;39(8):496.e499-496.e415.

893 103. Reddy AV, Pariser JJ, Pearce SM, et al. Patterns of Failure After Radical Cystectomy for pT3-4 Bladder Cancer:
894 Implications for Adjuvant Radiation Therapy. *Int J Radiat Oncol Biol Phys*. 2016;94(5):1031-1039.

895 104. Larkins MC, Pasli M, Bhatt A, Burke A. Squamous cell carcinoma of the bladder: Demographics and outcomes
896 associated with surgery and radiotherapy. *J Surg Oncol*. 2024;129(3):649-658.

897 105. Novara G, Svatek RS, Karakiewicz PI, et al. Soft tissue surgical margin status is a powerful predictor of
898 outcomes after radical cystectomy: a multicenter study of more than 4,400 patients. *J Urol*.
899 2010;183(6):2165-2170.

900 106. Su C, Xue J, Liu N. Cox Regression Analysis of Prognostic Factors of Intensity-Modulated Radiotherapy in
901 Patients with Bladder Cancer. *Arch Esp Urol*. 2023;76(6):411-417.

902 107. Christodouleas JP, Baumann BC, He J, et al. Optimizing bladder cancer locoregional failure risk stratification
903 after radical cystectomy using SWOG 8710. *Cancer*. 2014;120(8):1272-1280.

904 108. Baumann BC, Guzzo TJ, He J, et al. A novel risk stratification to predict local-regional failures in urothelial
905 carcinoma of the bladder after radical cystectomy. *Int J Radiat Oncol Biol Phys*. 2013;85(1):81-88.

906 109. Novotny V, Froehner M, May M, et al. Risk stratification for locoregional recurrence after radical cystectomy
907 for urothelial carcinoma of the bladder. *World J Urol*. 2015;33(11):1753-1761.

908 110. Ku JH, Kim M, Jeong CW, Kwak C, Kim HH. Risk prediction models of locoregional failure after radical
909 cystectomy for urothelial carcinoma: external validation in a cohort of korean patients. *Int J Radiat Oncol Biol
910 Phys.* 2014;89(5):1032-1037.

911 111. Kim YB, Hong SJ, Yang SC, et al. Pattern of failure in bladder cancer patients treated with radical cystectomy:
912 rationale for adjuvant radiotherapy. *J Korean Med Sci.* 2010;25(6):835-840.

913 112. Marcq G, Afferi L, Neuzillet Y, et al. Oncological Outcomes for Patients Harboring Positive Surgical Margins
914 Following Radical Cystectomy for Muscle-Invasive Bladder Cancer: A Retrospective Multicentric Study on
915 Behalf of the YAU Urothelial Group. *Cancers (Basel).* 2022;14(23):5740.

916 113. Bateni ZH, Pearce SM, Zainfeld D, et al. National Practice Patterns and Overall Survival After Adjuvant
917 Radiotherapy Following Radical Cystectomy for Urothelial Bladder Cancer in the USA, 2004-2013. *Eur Urol
918 Oncol.* 2020;3(3):343-350.

919 114. Fischer-Valuck BW, Michalski JM, Mitra N, et al. Effectiveness of postoperative radiotherapy after radical
920 cystectomy for locally advanced bladder cancer. *Cancer Med.* 2019;8(8):3698-3709.

921 115. Bayoumi Y, Heikal T, Darweish H. Survival benefit of adjuvant radiotherapy in stage III and IV bladder cancer:
922 results of 170 patients. *Cancer Manag Res.* 2014;6:459-465.

923 116. Schmidt J, Furlano K, Kellmer P, et al. Retrospective analysis of partial cystectomy in patients with muscle-
924 invasive urothelial carcinoma: A German single-center experience. *Urol Oncol.* 2025;43(3):188 e181-188
925 e188.

926 117. Ballas L, Sargos P, Orré M, Bian SX, Daneshmand S, Eapen LJ. Tolerance of Orthotopic Ileal Neobladders to
927 Radiotherapy: A Multi-institutional Retrospective Study. *Clin Genitourin Cancer.* 2017;15(6):711-716.

928 118. Zaghloul MS, Awwad HK, Akoush HH, Omar S, Soliman O, el Attar I. Postoperative radiotherapy of carcinoma
929 in bilharzial bladder: improved disease free survival through improving local control. *Int J Radiat Oncol Biol
930 Phys.* 1992;23(3):511-517.

931 119. Singh P, Efstathiou JA, Plets M, et al. INTACT (S/N1806): Phase III Randomized Trial of Concurrent
932 Chemoradiotherapy with or without Atezolizumab in Localized Muscle Invasive Bladder
933 Cancer; Toxicity Update on First 213 Patients. *International Journal of Radiation Oncology, Biology,
934 Physics.* 2022;114(3):S76-S77.

935 120. Baumann BC, He J, Hwang WT, et al. Validating a Local Failure Risk Stratification for Use in Prospective Studies
936 of Adjuvant Radiation Therapy for Bladder Cancer. *Int J Radiat Oncol Biol Phys.* 2016;95(2):703-706.

937 121. Verghote F, Sargos P, Christodouleas JP, et al. International Consensus Guidelines for Adjuvant Radiation
938 Therapy for Bladder Cancer After Radical Cystectomy: Update From an IBIS Workgroup. *Pract Radiat Oncol.*
939 2022;12(6):524-532.

940 122. Baumann BC, Bosch WR, Bahl A, et al. Development and Validation of Consensus Contouring Guidelines for
941 Adjuvant Radiation Therapy for Bladder Cancer After Radical Cystectomy. *Int J Radiat Oncol Biol Phys.*
942 2016;96(1):78-86.

943 123. Baumann BC, Noa K, Wileyto EP, et al. Adjuvant radiation therapy for bladder cancer: a dosimetric
944 comparison of techniques. *Med Dosim.* 2015;40(4):372-377.

945 124. Dirix P, Vingerhoedt S, Joniau S, Van Cleynenbreugel B, Haustermans K. Hypofractionated palliative
946 radiotherapy for bladder cancer. *Support Care Cancer.* 2016;24(1):181-186.

947 125. Lacarrière E, Smaali C, Benyoucef A, Pfister C, Grise P. The efficacy of hemostatic radiotherapy for bladder
948 cancer-related hematuria in patients unfit for surgery. *Int Braz J Urol.* 2013;39(6):808-816.

949 126. Kouloulias V, Tolia M, Kolliarakis N, Siatelis A, Kelekis N. Evaluation of acute toxicity and symptoms palliation
950 in a hypofractionated weekly schedule of external radiotherapy for elderly patients with muscular invasive
951 bladder cancer. *Int Braz J Urol.* 2013;39(1):77-82.

952 127. Tey J, Soon YY, Cheo T, et al. Efficacy of Palliative Bladder Radiotherapy for Hematuria in Advanced Bladder
953 Cancer Using Contemporary Radiotherapy Techniques. *In Vivo.* 2019;33(6):2161-2167.

954 128. Ali A, Song YP, Mehta S, et al. Palliative Radiation Therapy in Bladder Cancer-Importance of Patient Selection:
955 A Retrospective Multicenter Study. *Int J Radiat Oncol Biol Phys.* 2019;105(2):389-393.

956 129. Aljabab S, Cheung P, Dennis K, Morgan SC. Hemostatic radiotherapy in advanced bladder cancer: a single-
957 institution experience. *Journal of Radiation Oncology.* 2017;6(4):379-385.

958 130. Seisen T, Sun M, Leow JJ, et al. Efficacy of High-Intensity Local Treatment for Metastatic Urothelial Carcinoma
959 of the Bladder: A Propensity Score-Weighted Analysis From the National Cancer Data Base. *J Clin Oncol.*
960 2016;34(29):3529-3536.

961 131. Fischer-Valuck BW, Patel SA, Brenneman RJ, et al. Association Between Local Radiation Therapy to the
962 Primary Bladder Tumor and Overall Survival for Patients with Metastatic Urothelial Cancer Receiving Systemic
963 Chemotherapy. *Eur Urol Oncol*. 2022;5(2):246-250.

964 132. Aboudaram A, Chaltiel L, Pouessel D, et al. Consolidative Radiotherapy for Metastatic Urothelial Bladder
965 Cancer Patients with No Progression and with No More than Five Residual Metastatic Lesions Following First-
966 Line Systemic Therapy: A Retrospective Analysis. *Cancers*. 2023;15(4):1161.

967 133. Augugliaro M, Marvaso G, Ciardo D, et al. Recurrent oligometastatic transitional cell bladder carcinoma: is
968 there room for radiotherapy? *Neoplasma*. 2019;66(1):160-165.

969 134. Franzese C, Francolini G, Nicosia L, Alongi F, Livi L, Scorsetti M. Stereotactic Body Radiation Therapy in the
970 Management of Oligometastatic and Oligoprogressive Bladder Cancer and Other Urothelial Malignancies. *Clin
971 Oncol (R Coll Radiol)*. 2021;33(1):50-56.

972 135. Francolini G, Desideri I, Detti B, et al. Stereotactic radiotherapy in oligoprogressive and oligorecurrent
973 urothelial cancer patients: A retrospective experience. *Cancer Treat Res Commun*. 2019;19:100124.

974 136. Duchesne GM, Bolger JJ, Griffiths GO, et al. A randomized trial of hypofractionated schedules of palliative
975 radiotherapy in the management of bladder carcinoma: results of medical research council trial BA09. *Int J
976 Radiat Oncol Biol Phys*. 2000;47(2):379-388.

977 137. Angrisani A, Bosetti DG, Vogl UM, Castronovo FM, Zilli T. Oligometastatic Urothelial Cancer and Stereotactic
978 Body Radiotherapy: A Systematic Review and an Updated Insight of Current Evidence and Future Directions.
979 *Cancers (Basel)*. 2024;16(18):3201.

980 138. Svedman FC, Holmsten K, Jawdat F, et al. Stereotactic body radiation therapy is beneficial for a subgroup of
981 patients with urothelial cancer and solitary metastatic disease: a single institution real-world experience.
982 *Radiat Oncol*. 2024;19(1):74.

983 139. Gondi V, Bauman G, Bradfield L, et al. Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice
984 Guideline. *Pract Radiat Oncol*. 2022;12(4):265-282.

985 140. Fokas E, Henzel M, Engenhart-Cabillic R. A comparison of radiotherapy with radiotherapy plus surgery for
986 brain metastases from urinary bladder cancer: analysis of 62 patients. *Strahlenther Onkol*. 2010;186(10):565-
987 571.

988 141. Taylor JM, McTyre ER, Tatter SB, et al. Gamma Knife Stereotactic Radiosurgery for the Treatment of Brain
989 Metastases from Primary Tumors of the Urinary Bladder. *Stereotact Funct Neurosurg*. 2018;96(2):108-112.

990 142. Rades D, Meyners T, Veninga T, Stalpers LJ, Schild SE. Hypofractionated whole-brain radiotherapy for multiple
991 brain metastases from transitional cell carcinoma of the bladder. *Int J Radiat Oncol Biol Phys*. 2010;78(2):404-
992 408.

993 143. Harshman LC, Tripathi A, Kaag M, et al. Contemporary Patterns of Multidisciplinary Care in Patients With
994 Muscle-invasive Bladder Cancer. *Clin Genitourin Cancer*. 2018;16(3):213-218.

995 144. Freudenburg E, Bagheri I, Srinivas S, et al. Race reporting and disparities regarding clinical trials in bladder
996 cancer: a systematic review. *Cancer Causes Control*. 2022;33(8):1071-1081.

997 145. Hasan S, Lazarev S, Garg M, et al. Racial inequity and other social disparities in the diagnosis and management
998 of bladder cancer. *Cancer Med*. 2023;12(1):640-650.

999 146. Pignot G, Barthelemy P, Borchiellini D. Sex Disparities in Bladder Cancer Diagnosis and Treatment. *Cancers
1000 (Basel)*. 2024;16(23):4100.

1001 147. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting
1002 systematic reviews. *J Clin Epidemiol*. 2021;134:178-189.

1003 148. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and
1004 exemplars for reporting systematic reviews. *BMJ*. 2021;372:n160.

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015 Appendix E1 Peer Reviewers and Disclosures (Comprehensive)

1016 Added to the draft prior to publication.

1017 Appendix E2 Abbreviations

1018 3-D CRT = 3-dimensional conformal radiation therapy
1019 5-FU = 5-fluorouracil
1020 cGy = centigray
1021 CT = computed tomography
1022 CTV = clinical target volume
1023 GI = gastrointestinal
1024 IMRT = intensity modulated radiation therapy
1025 KQ = key question
1026 MRI = magnetic resonance imaging
1027 MIBC = muscle-invasive bladder cancer
1028 NMIBC = non-muscle invasive bladder cancer
1029 OS = overall survival
1030 PET = positron emission tomography
1031 PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses
1032 RC = radical cystectomy
1033 RCT = randomized controlled trial
1034 RT = radiation therapy
1035 SIB = simultaneous integrated boost
1036 TMT = trimodal therapy
1037 TURBT = transurethral resection of bladder tumor
1038 VMAT = volumetric modulated arc therapy
1039

1040 Appendix E3 PICOTS Questions / Literature Search Strategy**1041 Search Limits:**

Search Date(s):	November 18, 2024
Age Range	Adults (≥ 18 years old)
Language	English only
Species	Humans
Publication Types	<ul style="list-style-type: none">• RCTs• Meta-analyses• Prospective trials (phase 2/3, prospective cohort studies)• Retrospective studies (KQ 1 ≥ 65 pts; KQ 3 ≥ 100 pts)• Dosimetric studies with validated clinical endpoints (KQ3 only, ≥ 10 pts)
Timeframe	<ul style="list-style-type: none">• January 1, 2009 – November 18, 2024 – All study types

1042

1043 Key Inclusions:

1044 Histology terms: Urothelial (transitional) cell carcinoma, variant histology (squamous cell carcinoma,
1045 adenocarcinoma, neuroendocrine, plasmacytoid, sarcomatoid)
1046 Anatomic location terms: Bladder
1047

1048 **Universal Exclusion Criteria:**

1049 1. Preclinical/nonhuman studies (phase I)

1050 2. Health economics/cost analysis studies

1051 3. Studies available in abstract only

1052 4. Guidelines, review articles, case reports, comments, or editorials

1053 5. Pediatric patients

1054 6. NCDB/SEER data

1055 7. Otherwise not relevant or out of scope

1056

1057

Item	Details
Key Question and PICO(TSS) Framework	
Key clinical question(s)	Key Question 1: What are the indications and contraindications for bladder preservation with curative-intent RT, with or without systemic therapy, for patients with nonmetastatic bladder cancer?
Definitions	Nonmetastatic defined as stage I-IIIB, (cT1-T4aN0-3) (excluding M1 disease)
Participants/ population	Nonmetastatic bladder cancer (clinical T1-T4aN0-3)
Intervention(s)/ exposure(s)	<ul style="list-style-type: none"> RT +/- systemic therapy
Comparator(s)/ control	<ul style="list-style-type: none"> Cystectomy (surgery) +/- neoadjuvant systemic therapy Systemic therapy alone TURBT alone or observation RT alone
Outcomes: primary/critical	<p>Primary:</p> <ul style="list-style-type: none"> Bladder intact event-free survival Cystectomy-free rate Disease-specific survival OS PFS NMIBC/MIBC/pelvic recurrence rates Complete response rates Locoregional control/locoregional disease-free survival Distant metastasis-free survival <p>Secondary:</p> <ul style="list-style-type: none"> Patterns of failure Patient and provider-reported QoL/adverse events/toxicities Biomarkers (prognostic and predictive) Posttreatment response assessment Surveillance imaging modality (eg, MRI vs CT) Urine cytology Surveillance timing or intervals Posttreatment cystoscopy Posttreatment biopsy
Timing	Definitive
Setting/context	Any
Study design	<ul style="list-style-type: none"> RCTs Prospective Retrospective (≥ 65 patients)
Health disparity considerations	Age/elderly; racial/ethnic disparities; gender; sociodemographic factors; insurance status; Latino/Hispanic; social determinants of health; time to treatment; access to care; income level; rural setting; smoking status; occupation

Key search selection criteria	<p>Inclusion criteria:</p> <ul style="list-style-type: none"> • Trimodal therapy/trimodality therapy (TURBT+ RT + chemotherapy) • Neoadjuvant chemotherapy + RT +/- systemic therapy • Bladder preservation therapy/bladder-sparing therapy/chemoRT <p>Exclusion criteria:</p> <ul style="list-style-type: none"> • Palliative intent • Prior cystectomy (salvage cystectomy is okay) • General exclusion criteria listed above
Validation set (PMID)	30433852, 35577644, 37187202, 25366678, 33689854, 19636019, 30712971, 27727064, 28081860, 28040351, 34337540, 33294644, 31400946, 39226514, 27720221, 37478391, 38387404, 28125821, 28400426, 37870965, 36383379, 38641541

1058

Item	Details
Key Question and PICO(TSS) Framework	
Key clinical question(s)	Key Question 2: What are appropriate RT techniques (eg, target volumes, modalities, simulation, image guidance) and dose-fractionation regimens for patients with intact, nonmetastatic bladder cancer being treated with curative intent?
Definitions	Nonmetastatic defined as stage I-IIIB, (cT1-T4aN0-3) (excluding M1 disease) <u>Other potentially relevant definitions for this KQ:</u> <ul style="list-style-type: none"> • Conventional fractionation (180-200 cGy/fx) • Hypofractionation >200 cGy/fx • Hyperfractionation (≥ 2 fractions daily of smaller than conventional fraction size) or accelerated fractionation (dosing more than once daily to shorten total treatment time) • GTV, PTV, OAR, CTV
Participants/ population	MIBC and NMIBC (cT1-T4aN0-3)
Intervention(s)/ exposure(s)	<ul style="list-style-type: none"> • RT/Trimodal therapy • Hypofractionated RT • Bladder only RT • Adaptive RT • Bladder tumor boost • IMRT • Post-cystectomy/adjuvant/salvage RT • Proton therapy
Comparator(s)/ control	<ul style="list-style-type: none"> • Whole pelvis RT/small pelvis RT/mini pelvis RT/pelvic RT • Conventionally fractionated RT • 3-D CRT • Photon therapy
Outcomes: primary/critical	<p>Primary:</p> <ul style="list-style-type: none"> • Toxicity • Patterns of failure • Safety/feasibility • Dosimetric comparison <p>Secondary:</p> <ul style="list-style-type: none"> • Cystectomy free rate • Disease-specific survival • OS • PFS • NMIBC/MIBC/pelvic recurrence rates • Complete response rates • Locoregional control / locoregional disease-free survival • Metastasis-free survival
Timing	Any

Setting/context	Any
Study design	<ul style="list-style-type: none"> • RCTs • Prospective • Retrospective (>100 pts) • Dosimetric studies with validated clinical endpoints (≥ 10 pts)
Health disparity considerations	N/A
Key search selection criteria	<p>Inclusion criteria:</p> <ul style="list-style-type: none"> • Trimodal therapy/trimodality therapy (TURBT+ RT + chemotherapy) • Bladder preservation therapy/bladder-sparing therapy/chemoRT <p>Exclusion criteria:</p> <ul style="list-style-type: none"> • Palliative intent • General exclusion criteria listed above
Validation set (PMID)	36725382, 26547385, 38047218, 37803392, 33316362, 31301959, 29655582, 28249609, 27026308, 37931278, 37225552, 33539743, 30433852, 37730609, 35691760, 33343830, 25445550, 31400946, 37478391, 26323390, 28558986, 37185773, 27737963

1059

Item	Details
Key Question and PICO(TSS) Framework	
Key clinical question(s)	Key Question 3: What are the indications, appropriate RT techniques (eg, target volumes, modalities, simulation, image guidance), and dose-fractionation regimens for postoperative RT, with or without systemic therapy, for patients with nonmetastatic bladder cancer status post cystectomy or partial cystectomy?
Definitions	Nonmetastatic post-cystectomy or post-partial cystectomy pT1-T4apN0-3M0 with ≥ 1 risk factors ($\geq pT3$, grade 3, positive nodes, positive margins)
Participants/population	Nonmetastatic bladder cancer (pT1-T4aN0-3)
Intervention(s)/exposure(s)	+/- RT (postoperative, adjuvant, salvage) +/ - chemotherapy or other systemic therapy
Comparator(s)/control	Cystectomy (surgery) +/ - systemic therapy without RT
Outcomes: primary/critical	<p>Primary:</p> <ul style="list-style-type: none"> • Locoregional control / locoregional disease-free survival / locoregional failure / locoregional relapse (recurrence)-free survival / pelvic recurrence rates • Patient and provider-reported QoL/adverse events/toxicities (acute and late) • Patterns of failure • Disease-specific survival • OS • PFS • Metastasis-free survival <p>Secondary:</p> <ul style="list-style-type: none"> • Safety/feasibility • Surveillance imaging modality (eg, MRI vs CT) • Urine cytology • Surveillance timing or intervals • Posttreatment cystoscopy (partial cystectomy) • Posttreatment biopsy (partial cystectomy)
Timing	Postoperative, adjuvant, salvage
Setting/context	Any
Study design	<ul style="list-style-type: none"> • RCTs • Prospective • Retrospective

Health disparity considerations	Age/elderly; racial/ethnic disparities; gender; sociodemographic factors; insurance status; Latino/Hispanic; social determinants of health; time to treatment; access to care; income level; rural setting; smoking status; occupation
Key search selection criteria	Inclusion criteria: <ul style="list-style-type: none"> • Radical or partial cystectomy +/- systemic therapy • Postoperative/adjuvant/salvage RT +/- systemic therapy Exclusion criteria: <ul style="list-style-type: none"> • Palliative intent • General exclusion criteria listed above
Validation set (PMID)	29188298, 34893458, 38879088, 28384195, 25506244, 33573998, 27026309, 24390799, 27020106, 22543204, 22658217, 25663359, 31119885, 38994178

1060

1061

Item	Details
Key Question and PICO(TSS) Framework	
Key clinical question(s)	Key Question 4: What are indications and appropriate dose-fractionation regimens for RT to the bladder or sites of metastasis for patients with metastatic or symptomatic bladder cancer being treated with noncurative intent?
Definitions	See participants
Participants/ population	Metastatic bladder cancer (any T Any N, M1a or M1b) OR Patients with nonmetastatic bladder cancer ineligible for definitive therapy, symptomatic bladder cancer being treated with noncurative intent
Intervention(s)/ exposure(s)	<ul style="list-style-type: none"> • RT to bladder +/- systemic therapy • RT to metastatic disease +/- systemic therapy • SBRT
Comparator(s)/ control	<ul style="list-style-type: none"> • Observation/best supportive care • Chemotherapy alone/immunotherapy alone/systemic treatment alone
Outcomes: primary/critical	<ul style="list-style-type: none"> • Palliation • Patient and provider-reported QoL/adverse events/toxicities • Patterns of failure • Safety/feasibility • Disease control/PFS/metastasis-free survival/OS
Timing	Any
Setting/context	Any
Study design	<ul style="list-style-type: none"> •RCTs •Prospective •Retrospective
Health disparity considerations	Age/elderly; racial/ethnic disparities; gender; sociodemographic factors; insurance status; Latino/Hispanic; social determinants of health; time to treatment; access to care; income level; rural setting; smoking status; occupation
Key search selection criteria	Inclusion criteria: RT for hematuria RT for pelvic pain RT for urinary/bladder symptoms Bladder RT Pelvic RT Hypofractionated RT Palliative RT Metastasis-directed RT Metastatic bladder cancer/advanced bladder cancer Oligometastatic/oligoprogressive/oligorecurrent bladder cancer Oligometastatic genitourinary cancer RT to metastases (including stereotactic body RT) Exclusion criteria:

	General exclusion criteria included above
Validation set (PMID)	25975677, 28586948, 31283979, 32723486, 36831503, 34215505, 30509099, 28465049, 30851645, 35249864, 27269944, 26421586

1062

1063 *Abbreviations:* 3-D CRT = 3-dimensional conformal radiation therapy; chemoRT = chemoradiation; CT = computed
1064 tomography; CTV = clinical target volume; fx = fraction(s); GTV = gross tumor volume; IMRT = intensity modulated radiation
1065 therapy; MIBC = muscle-invasive bladder cancer; MRI = magnetic resonance imaging; NCDB = national cancer database;
1066 NMIBC = non-muscle invasive bladder cancer; OAR = organ(s) at risk; OS = overall survival; PFS = progression free survival; PTV
1067 = planning target volume; QoL = quality of life; RCT = randomized controlled trial; RT = radiation therapy; SBRT = stereotactic
1068 body radiation therapy; SEER = Surveillance, Epidemiology, and End Results; TURBT = transurethral resection of bladder
1069 tumor.

1070