

Stereotactic Radiosurgery Versus Whole-brain Radiation Therapy For Patients With 4-15 Brain Metastases: A Phase III Randomized Controlled Trial

Jing Li, MD, PhD

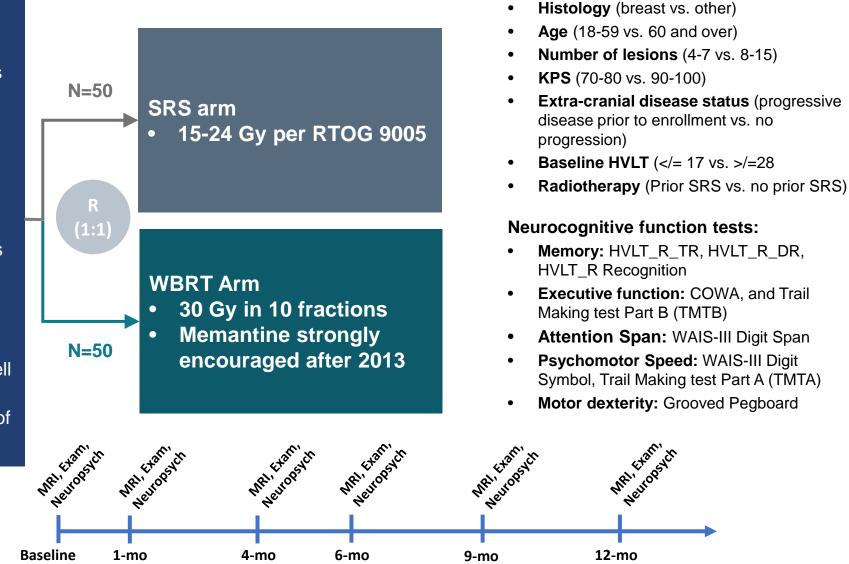
University of Texas MD Anderson Cancer Center

Disclosures

- Employer: University of Texas MD Anderson Cancer Center
- Research funding from BMS
- Research funding from Medtronic
- Honorarium from Novocure and Monteris
- MD Anderson internal research grants
- Full author list: J. Li,¹ E.B. Ludmir,² Y. Wang,³ N. Guha-Thakurta,³ M.F. McAleer,³ S.H. Settle, Jr,⁴ D.N. Yeboa,¹ A.J. Ghia,¹ S.L. McGovern,² C. Chung,³ K.D. Woodhouse,³ T.M. Briere,² C.M. Sullaway,⁵ D.D. Liu,³ G. Rao,⁵ E.L. Chang,⁶ A. Mahajan,⁷ E.P. Sulman,⁸ P.D. Brown,⁷ and J.S. Wefel³; ¹Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, ²Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, ³The University of Texas MD Anderson Cancer Center, Houston, TX, ³The University of Texas MD Anderson Cancer Center, Houston, TX, ⁴Anchorage Radiation Therapy Center, Anchorage, AK, United States, ⁵University of Texas MD Anderson Cancer Center, Houston Oncology, University of Southern California Keck School of Medicine, Los Angeles, CA, ⁷Department of Radiation Oncology, Mayo Clinic, Rochester, MN, ⁸New York University, Department of Radiation Oncology, New York City, NY

Background

- Up to 30% of cancer patients develop brain metastases
 - Rising incidence due to prolonged survival and better imaging surveillance
 - Historically poor overall survival (~1-4 months)
 - Main treatment modalities: radiation and surgery
 - Whole brain radiation (WBRT) associated with significant cognitive side effects
- In patients with 1-3 (or 4) brain metastases
 - Two Phase III randomized trials established stereotactic radiosurgery (SRS) as the standard care, replacing WBRT, due to better preservation of patients' cognitive function, without compromising overall survival (*Chang EL, Lancet Onc 2009; Brown PD, JAMA 2016*)
- Purpose of the current study
 - To investigate if SRS could replace WBRT in patients with 4-15 brain metastases in a phase III randomized trial


Trial Design (Schema)

Key Eligibility Criteria:

- Adult patient with 4-15 untreated brain mets confirmed by neuroradiology (up to 20 lesions allowed at the time of treatment)
- All lesions amenable to SRS treatment
- KPS >/=70
- No LMD (radiographic or cytological)
- No prior WBRT
- Prior SRS to 1-3 brain mets with > 6 weeks intervals allowed
- Excluded prior surgical resection of brain mets
- Excluded histology: melanoma, small cell carcinoma, lymphoma/leukemia, or germ cell histology
- Systemic therapy allowed at the discretion of treating oncologist

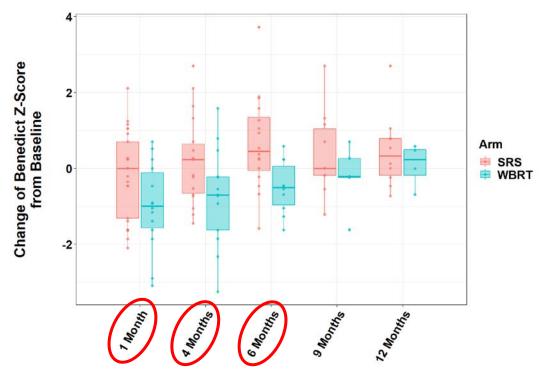
Primary Endpoints

- Memory function at 4 mo (HVLT_R_TR)
- Local control at 4 mo

Stratification factors:

Memory Function at 4 Months -- Primary Endpoint

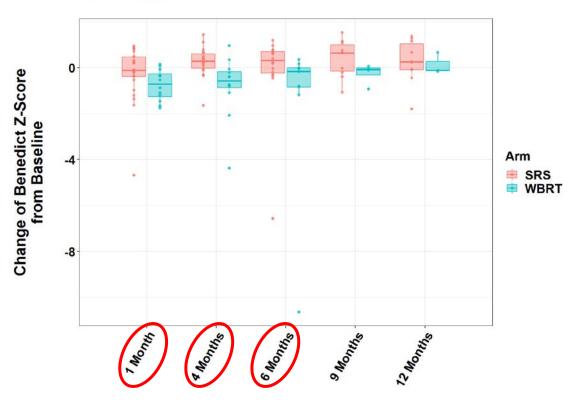
• HVLT_R_TR: change of Z-score from baseline


• At 4 months

SRS: Increased by 0.21 (SD 1.15) (n=18)
WBRT: Decreased by 0.74 (SD 1.31) (n=13)
p=0.041

At 1 month and 6 months

Clinically meaningful and statistically significant
 benefit with SRS was also observed at 1 month
 (p= 0.033) and 6 months (p=0.012)



Global Cognitive Function Measure (Clinical Trial Battery Composite Score)

- Composite score
 - Mean Z-score from HVLT_R_TR, HVLT_R_DR, and HVLT_R Rec, COWA, TMTA, and TMTB
 - Change from baseline
- Better cognitive composite scores in SRS arm
 - Statistically significant at months 1, 4 and 6

Follow up Time Point	SRS	WBRT	р
1-mo (median [IQR])	-0.12 [-0.38, 0.47]	-0.71 [-1.26, -0.28]	0.024
4-mo (median [IQR])	0.28 [-0.03, 0.60]	-0.57 [-0.88, -0.17]	0.004
6-mo (median [IQR])	0.31 [-0.23, 0.70]	-0.16 [-0.84, -0.01]	0.027
9-mo (median [IQR])	0.64 [-0.16, 1.00]	-0.08 [-0.32, -0.01]	0.153
12-mo (median [IQR])	0.25 [-0.09, 1.03]	-0.12 [-0.14, 0.27]	0.823

Change of Benedict Z-Score of CTB Comp at Each Time Poin

Overall Survival

Overall Survival

1.00 Survival probability 0.75 0.50 -0.25 p = 0.590.00 10 20 30 40 50 60 70 80 0 Time in months Treatment Group Number at risk 35 15 8 0 SRS -34 15 VBRT 10 20 30 40 50 60 70 80 0 Time in months

Treatment Group 🕂 SRS 🕂 WBRT

• Overall survival by intention-to-treat

o 69 out of 72 pts evaluable for OS
o 35 for SRS and 34 for WBRT
o Estimate median OS

	N	Events (death)	Median (month)	95% Cl (month)
SRS	35*	30	7.8	6.1 - 14.6
WBRT	34**	26	8.9	6.4 - 26.4

*Include 6 patients who had more than 20 lesions at time of SRS planning and received WBRT off protocol

** Include 4 patients received SRS and 2 patients received HA-WBRT off protocol

Estimating Overall Survival Curves with the Kaplan-Meier Method by intention-to-treat: *P* = 0.59

Other Results

- Local Control at 4 mo
 - 95% (SRS) vs 87% (WBRT), p-value 0.79
- Distant brain control
 - 60% (SRS) vs 80% (WBRT), p-value 0.37
- Time to systemic therapy
 - 1.7 weeks (SRS) vs 4.1 weeks (WBRT), p-value 0.001
- Toxicities
 - \geq Grade 3 toxicities 8% (SRS) vs 15% (WBRT)
 - Radiation necrosis: 17% at patient level and 4% at lesion level

Despite early termination of the trial due to NRG CC001 and use of memantine in 2/3 WBRT patients, in patients with 4-15 brain mets:

- SRS was associated with reduced risk of neurocognitive deterioration compared to WBRT, as demonstrated by a constellation of neurocognitive tests, individually or by composite scores
 - The differences between the two arms were large and clinically meaningful
- No difference in overall survival rates
- SRS was associated with shorter time to systemic therapy

Conclusion

The results from this phase III randomized trial strongly supports the use of SRS in patients with 4-15 brain metastases to better preserve cognitive function and to minimize interruption of systemic therapy, without compromising overall survival.