Low-dose Radiation Therapy and Severe COVID-19-Related Pneumonia

Deborah E. Citrin, MD

National Cancer Institute

Senior Investigator, Radiation Oncology Branch

Deputy Director, Center for Cancer Research
Disclosures

• I have no conflicts of interest to disclose
Biologic Rationale: COVID-19 pneumonia

- Accumulation of macrophages in the alveolus, lymphocytes in the interstitium, and a diffuse alveolar damage¹
- Cytokine storm is the result of activated immune cells producing large amounts of cytokines that in turn leads to hyperinflammation
 - Macrophage activation implicated as a key component of cytokine storm²
 - Immune suppression (dexamethasone) has proven useful in severe COVID-19

Why might this work?

• Cells of different types have varying sensitivity to radiation
 • Immune cells – relatively sensitive
 • Other lung cells - relatively resistant
• Low dose radiation (< 1 Gy)
 • can reduce the oxidative burst and NO• production from macrophages1,2
 • can cause fibrocytes to differentiate, reducing proliferation and eventual fibrosis3
 • may reduce leukocyte adhesion to endothelial cells

Cell Death & Differentiation. 27: 1451–1454(2020)
Cytokines/Correlatives

- Inflammation
 - IL-6
 - CRP
 - LDH
 - Ferritin
 - ESR
- Kidney injury
 - Creatinine
- Liver injury
 - AST
 - ALT

Bold: p<0.05; **italics:** trend

What are some concerns?

- Risk of long-term toxicity
 - Risk of cancer or cardiac damage is well documented from similar radiation doses in long term atomic bomb survivors
- Reducing long term toxicity
 - Determining whether there is a benefit that outweighs risks
 - Treating patients at lower risk of cancers (shorter overall life expectancy)
 - The lowest dose that achieves successful outcomes will reduce long term risks
 - Fractionated versus single dose (safety of patients and caregivers)
- Low dose is variably defined
- Lymphocytes more sensitive than macrophages – can this impact immunity or clearance?