

News Briefing The Year in Radiation Oncology

Tuesday, September 17, 2019 1:30-2:15 p.m. CT

News Briefing: The Year in Radiation Oncology

Moderator: Theodore L. DeWeese, MD, PhD, FASTRO, Chair of the ASTRO Board of Directors

Update on ORATOR: Radiotherapy vs. Trans-Oral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma David Palma, MD, PhD, London Health Sciences Centre

Update on NRG Oncology CC001: Hippocampal Avoidance during Whole-Brain Radiotherapy for Brain Metastases *Vinai Gondi, MD, Northwestern Medicine*

Preview of Cancer Breakthroughs: Takeaways from the Major Oncology Meetings of 2019 Theodore L. DeWeese, MD, FASTRO, ASTRO Chair, Johns Hopkins Kimmel Cancer Center

A Randomized Trial of Radiotherapy vs. Trans-Oral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma (ORATOR)

<u>D. Palma</u>, J. Theurer, E. Prisman, N. Read, E. Berthelet, E. Tran, K. Fung, J. de Almeida, A. Bayley, D. Goldstein, M. Hier, K. Sultanem, K. Richardson, A. Mlynarek, S. Krishnan, H. Le, J. Yoo, S.D. MacNeil, E. Winquist, J. A. Hammond, V. Venkatesan, S. Kuruvilla, A. Warner, S. Mitchell, J. Chen, M. Corsten, S. Johnson-Obaseki, L. Eapen, M. Odell, C. Parker, B. Wehrli, K. Kwan, <u>A. Nichols</u>

Human Papillomavirus

- HPV is the most common sexually transmitted infection
- At least 80% of adults who have been sexually active have been exposed
 - Since infections can be transient, some experts believe the true exposure rate is near 100%
- HPV causes cancers of the cervix, vagina, penis, anus, vulva, and oropharynx

The Oropharynx

Risk factors for oropharyngeal HPV infection:

- Number of sexual (including oral sex) partners
- Number of open-mouthed kissing partners
- Older age
- Tobacco
- Marijuana

CDC: HPV-related cancers increasing

Treatment: Older Surgical Techniques

Chemotherapy + Radiation

 Standard treatment at most centres has been 7 weeks of radiation with high-dose chemotherapy

A Patient's Perspective

- Nearly all of our interaction with the world is done through our face
- Our neck and mouth are critical for self-image
 - "I can't eat with others"
 - "I can't go to restaurants"
 - "Meals take me hours to eat"
 - "I tube feed myself for 8 hours at night"
 - "I need to carry a water bottle at all times"
 - "My mouth is too dry to do my job in sales"
 - "I have ongoing pain"
 - "Am I the same person?"

Trans-Oral Robotic Surgery (TORS)

Trans-Oral Robotic Surgery (TORS)

CNET → News → Health Tech

Have HPV-related oral cancer? The robot will see you now

In a Mayo Clinic study, robotic surgery appeared less debilitating than traditional, more invasive surgery and radiation therapy. The surgeons now plan to offer robot docs as a primary treatment.

Radiation Has Also Improved

Rise of Transoral Robotic Surgery (TORS) and Laser Microsurgery (TLM)

Cancer. 2016 May 15;122(10):1523-32. doi: 10.1002/cncr.29938. Epub 2016 Mar 11.

Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base.

Cracchiolo JR¹, Baxi SS², Morris LG¹, Ganly I¹, Patel SG¹, Cohen MA^{1,3}, Roman BR¹.

	Overall	Primary Surgical Treatme (Versus Primary XRT)	ent
Characteristic	No. (Column %)	No. (Row % Compared With Primary XRT [Not Shown])	P ^a
Year diagnosed			<.0001
2004	568 (6.5%)	319 (56.2%)	
2005	644 (7.3%)	354 (55%)	
2006	674 (7.7%)	400 (59.3%)	
2007	747 (8.5%)	431 (57.7%)	
2008	1052 (12%)	674 (64.1%)	
2009	1174 (13.4%)	792 (67.5%)	
2010	939 (10.7%)	651 (69.3%)	
2011	979 (11.2%)	724 (74%)	
2012	970 (11.1%)	784 (80.8%)	
2013	1021 (11.6%)	838 (82.1%)	

Randomized Data Lacking

• Prior to ORATOR, no randomized trials compared primary surgery to primary radiation for oropharyngeal cancer

<u>Purpose</u>

• To compare swallowing quality of life (QOL) at 1-year for patients undergoing a primary radiotherapy approach versus a primary TORS approach

ORATOR Schema

Main Inclusion Criteria

- Squamous cell carcinoma of the oropharynx
- Tumor stage: T1 or T2, with likely negative resection margins
- Nodal stage: N0, N1, or N2
 - < 4 cm, no ECS on pre-randomization imaging

Arm 1 - Radiation

- T1-2 N0: Radiation Alone (70 Gy)
- T1-2 N1-2: Chemoradiation (high dose cisplatin preferred)

Arm 2 – Primary Surgery

• TORS of primary site with neck dissection

Adjuvant Therapy

- **Radiation:** close resection margins (<2 mm), positive lymph nodes, lymphovascular invasion, pT3-4 disease
- **Chemoradiation:** extranodal extension, positive margins

Endpoints

Primary Endpoint

- Quality of life 1-year post-treatment
 - Assessed with the MD Anderson Dysphagia Inventory (MDADI)

Secondary Endpoints

- Overall and progression-free survival
- Quality of life at other time points
 - MDADI, the EORTC QLQ-C30 and H&N35 scales, the Voice Handicap Index (VHI-10), the Neck Dissection Impairment Index (NDII), and the Patient Neurotoxicity Questionnaire (PNQ), audiology
- CTCAE Toxicity
- Feeding tube rate at 1-year

Endpoints

• Feeding tube rate at 1-year

Today's Presentation

Primary Endpoint (MDADI) Comparisons in Specific Subsets

- MDADI scores based on treatment intensity
- Site of primary tumor (tonsil vs. BOT)
- T1 vs. T2
- N0 vs. N+

The MDADI: Important Outcomes for Patients

My swallowing ability limits my day-to-day activities.

Strongly Agree	Agree	No Opinion	Disagree	Strongly Disagree
----------------	-------	------------	----------	-------------------

E2. I am embarrassed by my eating habits.

	ree Agree No Opinion Disagree Strong	pinion Disagree Strongly Disagree	y Disagre
--	--------------------------------------	-----------------------------------	-----------

F1. People have difficulty cooking for me.

Strongly Agree	Agree	No Opinion	Disagree	Strongly Disagree
----------------	-------	------------	----------	-------------------

P2. Swallowing is more difficult at the end of the day.

Subligity Agree Agree No Opinion Disagree Subligity D	Strongly Agree	Agree No Opinion Dis	agree Strongly Disagree
---	----------------	----------------------	-------------------------

E7. I do not feel self-conscious when I eat.

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Sample Size and Analyses

- The primary endpoint was a definitive QOL comparison using total MDADI scores at 1-year
- A 10-point difference was pre-specified as a clinically meaningful change (CMC)
- In order to detect a 10-point improvement in QOL in the **TORS arm** (Arm 2), a total of **68 patients** were required (34 in each arm).

(Two-sided, independent-sample t-test with an alpha level of 0.05 and power of 90%, and assumed dropout rate of 10%)

Results

Baseline Characteristics

Between 2012 and 2017, 68 patients were randomized at 6 centres in Canada and Australia

<u>Characteristic</u>	<u>All Patients</u> (n=68)	<u>RT Arm</u> <u>(n=34)</u>	<u>TORS+ ND Arm</u> <u>(n=34)</u>
Age – median (interquartile range)	58.5 (52.9 <i>,</i> 65.2)	60.0 (53.2, 65.2)	58.1 (52.6, 64.5)
p16 Status	60/68	30/34	30/34
Gender – n(%)			
Male	59 (87)	31 (91)	28 (82)
Female	9 (13)	3 (9)	6 (18)
Smoking History – n(%)			
Current	17 (25)	8 (24)	9 (26)
Previous (> 1 year since quit)	32 (47)	20 (59)	12 (35)
Non-Smoker	19 (28)	6 (18)	13 (38)

Baseline Characteristics

Characteristic	All Patients	<u>RT Arm</u>	TORS +ND Arm
	<u>(n=68)</u>	<u>(n=34)</u>	<u>(n=34)</u>
Tonsil	50 (74)	26 (76)	24 (71)
Base of Tongue	18 (26)	8 (24)	10 (29)
Clinical T Stage – n(%)			
T1	30 (44)	13 (38)	17 (50)
T2	38 (56)	21 (62)	17 (50)
Clinical N Stage – n(%)			
NO	21 (31)	12 (35)	9 (26)
N1	12 (18)	5 (15)	7 (21)
N2	35 (51)	17 (50)	18 (53)

MDADI Scores

Variable	1-Year – mean ± SD			
variable	RT Arm	TORS Arm	P- value	
Total (Primary Endpoint)	86.9 ± 11.4	80.1 ± 13.0	0.04	

Overall Summary of Secondary Endpoints

Favor RT

- Swallowing
 - MDADI
 - FOIS
- Less pain and pain medication use
- No bleeding
- Less Trismus
- Trend towards less shoulder impairment

Favor Surgery

- Less Tinnitus and Hearing Loss
- Less neutropenia
- Less constipation

Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial

Anthony C Nichols, Julie Theurer, Eitan Prisman, Nancy Read, Eric Berthelet, Eric Tran, Kevin Fung, John R de Almeida, Andrew Bayley, David P Goldstein, Michael Hier, Khalil Sultanem, Keith Richardson, Alex Mlynarek, Suren Krishnan, Hien Le, John Yoo, S Danielle MacNeil, Eric Winquist, J Alex Hammond, Varagur Venkatesan, Sara Kuruvilla, Andrew Warner, Sylvia Mitchell, Jeff Chen, Martin Corsten, Stephanie Johnson-Obaseki, Libni Eapen, Michael Odell, Christina Parker, Bret Wehrli, Keith Kwan, David A Palma

Median MDADI Scores by Treatment Intensity

MDADI Scores by Disease Site

*Curves truncated when n<5

MDADI Scores by T-Stage

*Curves truncated when n<5

MDADI Scores by N-Stage

*Curves truncated when n<5

Discussion

Take Home Messages

- Previous assertions that TORS is superior to RT appear incorrect
 - In subset analyses today, we were unable to identify a group where TORS is superior
- Our evidence suggests that the widespread adoption of TORS in the U.S. was been premature
- The pros and cons of BOTH modalities need to be discussed with all patients with OPSCC.

Upcoming Data: De-Escalation

A Randomized Trial of Radiotherapy vs. Trans-Oral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma (ORATOR)

<u>D. Palma</u>, J. Theurer, E. Prisman, N. Read, E. Berthelet, E. Tran, K. Fung, J. de Almeida, A. Bayley, D. Goldstein, M. Hier, K. Sultanem, K. Richardson, A. Mlynarek, S. Krishnan, H. Le, J. Yoo, S.D. MacNeil, E. Winquist, J. A. Hammond, V. Venkatesan, S. Kuruvilla, A. Warner, S. Mitchell, J. Chen, M. Corsten, S. Johnson-Obaseki, L. Eapen, M. Odell, C. Parker, B. Wehrli, K. Kwan, <u>A. Nichols</u>

Q & A

Use the "Question" tab in GoToWebinar to submit your questions.

Significant Preservation of Neurocognitive Function and Patient-Reported Symptoms with Hippocampal Avoidance during Whole-Brain Radiotherapy for Brain Metastases: Final Results of NRG Oncology CC001

Vinai Gondi, MD*, Stephanie Pugh, PhD, Paul D. Brown, MD*, Jeffrey S. Wefel, PhD, Wolfgang A. Tome, PhD, Terri S. Armstrong, PhD, Deborah W. Bruner, PhD, Joseph A. Bovi, MD, Cliff G. Robinson, MD, Deepak Khuntia, MD, David R. Grosshans, MD, PhD, Andre A. Konski, MD, MBA, David Roberge, MD, Vijayananda Kundapur, MD, Kiran Devisetty, MD, Sunjay A. Shah, MD, Kenneth Y. Usuki, MD, Bethany M. Anderson, MD, Minesh P. Mehta, MD, Lisa A. Kachnic, MD

> *Co-Principal Investigators contributed equally to this work. Special Thanks to Snehal Deshmukh, MS of NRG Oncology Biostatistics.

Disclosures for Dr. Gondi

 Partnership, Radiation Oncology Consultants, LLC; Honoraria, UpToDate; Honoraria/Travel expenses: Physicans' Education Resource

Background

•Whole-brain radiotherapy is associated with cognitive toxicity

- 1-4 brain metastases: N0574¹, N107C², MD Anderson trial³
- Declining use of WBRT, rising use of radiosurgery

•Neuroregenerative stem cells within the hippocampal dentate gyrus are exquisitely radiosensitive and important to cognition

 Preclinical/clinical evidence supports the hippocampal dentate gyrus as a memoryspecific and radiosensitive structure-at-risk⁴

Hypothesis: Hippocampal avoidance using IMRT prevents cognitive toxicity from WBRT

¹Brown et al. JAMA 2016 ²Brown et al. Lancet Oncol 2017 ³Chang et al. Lancet Oncol 2009 ⁴Gondi et al. R&O 2010

RTOG 0933

•Single-arm phase II trial of HA-WBRT (30 Gy in 10 fractions)

• Credentialing and central review of hippocampal contouring and IMRT planning

Need phase III data for level I evidence

Gondi et al. JCO 2014

RTOG 0614

Phase III trial of WBRT with or without memantine

Memantine during WBRT considered standard of care

Brown et al. Neuro-Oncol 2013

NRG-CC001: Phase III Trial Memantine and WBRT with or without Hippocampal Avoidance in Patients with Brain Metastases

<u>Basic Eligibility</u>: Brain metastases 5mm outside hippocampus; KPS>70; 3D MRI scan; hydrocephalus/ventricular distortion excluded; baseline NCF testing

Trial Design

•Primary endpoint: Time to cognitive failure

- Cognitive battery: Hopkins Verbal Learning Test-Revised, Controlled Oral Word Association, Trail Making Test
- Cognitive failure: reliable change index defined decline on one or more tests
- Cumulative incidence to estimate time to cognitive failure
 - Death without cognitive failure treated as competing risk
- Secondary endpoints: patient-reported symptom burden (MDASI-BT), toxicity, progression-free and overall survival
- Probability of cognitive failure
 - Overall HR = 0.65
 - 382 analyzable patients for 90% power and two-sided α =0.05
 - Sample size increased by 25% for possible non-compliance

Target Accrual: 510 patients

Baseline Characteristics

518 randomized patients

Baseline	WBRT+Mem n=257	HA-WBRT+Mem n=261	<i>p</i> value
Age	Median 61	Median 62	0.66
RPA class	Class I: 14.8% Class II: 85.2%	Class I: 12.6% Class II: 87.4%	0.48
Neurologic symptoms	None: 46.3% Minor: 33.5%	None: 43.3% Minor: 35.2%	0.83
Primary tumor	Lung 58.8% Breast 17.5%	Lung 59.8% Breast 19.5%	0.81
KPS	70: 20.6% 80: 29.2% 90-100: 50.2%	70: 18.4% 80: 31.0% 90-100: 50.6%	0.38

No differences in baseline patient characteristics, including cognitive function and patient-reported symptom burden

Toxicity

Toxicity	WBRT+Mem n=257	HA-WBRT+Mem n=261	<i>p</i> value
Any relation	Grade 3: 89 (38.4%) Grade 4: 20 (8.6%) Grade 5: 35 (15.1%) Grade 3+: 144 (62.1%)	Grade 3: 70 (31.4%) Grade 4: 25 (11.2%) Grade 5: 36 (16.1%) Grade 3+: 131 (58.7%)	0.47
Treatment-related toxicity	Grade 3: 36 (15.5%) Grade 4: 7 (3.0%) Grade 5: 3 (1.3%) Grade 3+: 46 (19.8%)	Grade 3: 36 (16.1%) Grade 4: 4 (1.8%) Grade 5: 3 (1.3%) Grade 3+: 43 (19.3%)	0.88

Treatment-related grade 5 toxicities:

WBRT+mem: Neoplasms benign, malignant and unspecified (n=3) HA-WBRT+mem: Gen d/o's and administration site conditions (n=2, possible) Somnolence (n=1, possible, 64d after tx start)

No differences in any or treatment-related toxicity

Primary Endpoint

- Hippocampal avoidance <u>prevents</u> <u>cognitive function failure</u>
 - Hazard ratio = 0.756 *p*=0.029
 - Separation of the curves starting at 3 months and maintained through the follow-up period

Primary Endpoint

- Hippocampal avoidance prevents cognitive function failure
 - 26% relative risk reduction
- Multivariate analysis: Treatment arm and age
- No interaction between treatment arm and age
 - Effect of treatment remains significant independent of age

Variable	HR	95% CI	<i>p</i> value
Treatment arm (HA-WBRT+Mem vs. WBRT+Mem[RL])	0.74	0.58-0.94	0.016
Age (≤61 vs. >61[RL])	0.61	0.47-0.80	0.0003
RPA Class* (I vs. II[RL])	1.36	0.98-1.87	0.063
Prior radiosurgery* (No vs. Yes[RL])	0.82	0.62-1.08	0.158
Prior surgery* (No vs. Yes[RL])	1.10	0.84-1.44	0.504
			<u>c</u> .

*Stratification factor [RL]: Reference level

Median follow-up for alive patients: 12.1 months

Cognition Domains at 4 Months

- Hippocampal avoidance reduces deterioration of
 - 4 months: <u>Executive function</u> (Trail Making Test B)

Deterioration at 4 months:

Cognitive Domain	WBRT +Mem n=109	HA-WBRT +Mem n=93	p
HVLT-R Total Recall	35.5%	29.0%	0.33
HVLT-R Delayed Recall	33.0%	24.7%	0.19
HVLT-R Recognition	24.8%	14.0%	0.055
Trail Making Test Part A	24.8%	20.4%	0.46
Trail Making Test Part B	40.4%	23.3%	0.012
Controlled Oral Word Association	12.1%	10.5%	0.73

Median follow-up for alive patients: 12.1 months

Cognition Domains at 6 Months

- Hippocampal avoidance reduces deterioration of
 - 4 months: <u>Executive function</u> (Trail Making Test B)
 - 6 months: <u>Learning and memory</u> (HVLT-R Recognition)

Deterioration at 6 months:

Cognitive Domain	WBRT +Mem n=77	HA-WBRT +Mem n=61	p
HVLT-R Total Recall	26.8%	14.7%	0.07
HVLT-R Delayed Recall	30.0%	20.6%	0.19
HVLT-R Recognition	36.3%	17.6%	0.011
Trail Making Test Part A	28.0%	17.6%	0.13
Trail Making Test Part B	35.9%	23.9%	0.12
Controlled Oral Word Association	6.2%	11.8%	0.23

Median follow-up for alive patients: 12.1 months

Cognition Domains Over Time

- Hippocampal avoidance reduces deterioration of
 - 4 months: <u>Executive function</u> (Trail Making Test B)
 - 6 months: <u>Learning and memory</u> (HVLT-R Recognition)
- Hippocampal avoidance preserves all learning and memory domains over time
 - HVLT-R total recall, delayed recall and recognition

Mixed effects models using multiple imputation:

Higher score indicates better performance

Median follow-up for alive patients: 12.1 months

Cognition Domains Over Time

- Hippocampal avoidance reduces deterioration of
 - 4 months: <u>Executive function</u> (Trail Making Test B)
 - 6 months: <u>Learning and memory</u> (HVLT-R Recognition)
- Hippocampal avoidance preserves all learning and memory domains over time
 - HVLT-R total recall, delayed recall and recognition

Mixed effects models using multiple imputation:

Higher score indicates better performance

Median follow-up for alive patients: 12.1 months

Cognition Domains Over Time

- Hippocampal avoidance reduces deterioration of
 - 4 months: <u>Executive function</u> (Trail Making Test B)
 - 6 months: <u>Learning and memory</u> (HVLT-R Recognition)
- Hippocampal avoidance preserves all learning and memory domains over time
 - HVLT-R total recall, delayed recall and recognition

Mixed effects models using multiple imputation:

Median follow-up for alive patients: 12.1 months

Patient-Reported Symptom Burden

- Hippocampal avoidance preserves patient-reported symptoms at 6 months:
 - Neurologic symptom burden
 - Interference of neurologic symptoms in daily activities

Change from Baseline to 6 months:

Variable	Estimat e	p value	Estimate	p value
	Complete Data		Imputed	d Data
Symptom	-0.26	0.083	-1.37	<0.001*
Interference	-5.07	0.003*	-1.93	0.0016*
Cognitive factor	-0.05	0.77	-0.17	0.35
Neurologic factor *Significant usin	0.213 g Hochburg'	0.32 s multiplicity	-0.13 / adjustment	0.56

Median follow-up for alive patients: 12.1 months

Patient-Reported Outcomes

- Hippocampal avoidance preserves patient-reported symptoms at 6 months:
 - Neurologic symptom burden
 - Interference of neurologic symptoms in daily activities
- Hippocampal avoidance preserves patient-reported cognitive factor over time:
 - Hippocampal avoidance associated with less problems remembering things at 6 months (*p*=0.016)

Mixed effects models using multiple imputation:

Higher score indicates more symptoms

Median follow-up for alive patients: 12.1 months

Survival

Toxicity	WBRT+Mem n	=257	HA-WBRT+Mem n=261	<i>p</i> value
Intracranial Progression-Free Survival	Median: 5.3 months 95% CI: 4.7-6.0		Median: 5.0 months 95% CI: 4.4-6.2	0.076
	HR = 1.20 95% CI: 0.98-1.4		-1.47	
Overall Survival	Median: 7.6 months 95% CI: 5.8-10.1		Median: 6.3 months 95% CI: 4.0-7.7	0.242
	HR = 1.14	95% CI: 0.91	-1.43	

No significant differences in intracranial PFS or overall survival HA region relapses: HA-WBRT+Mem 11 WBRT+Mem 17

Median follow-up for alive patients: 12.1 months

- Hippocampal avoidance during WBRT plus memantine preserves cognitive function and patient-reported symptoms in brain metastasis patients
 - Improvements in patient-reported cognition over time and 6-month change in neurologic symptom burden, interference of neurologic symptoms with daily activities, and problems remembering things
 - Benefits in executive functioning at 4 mos, recognition at 4 and 6 mos, and all domains of learning and memory over time
 - Similar toxicity, intracranial PFS and overall survival outcomes

For brain metastasis patients eligible to receive WBRT and whose survival is expected to be 4 months or longer, hippocampal avoidance using IMRT should be considered standard of care.

NCCN National Comprehensive Cancer Network[®]

NCCN Guidelines Version 1.2019 Central Nervous System Cancers

NCCN Guidelines Index Table of Contents Discussion

PRINCIPLES OF RADIATION THERAPY FOR BRAIN AND SPINAL CORD

Brain Metastases

• WBRT: Doses vary between 20 and 40 Gy delivered in 5–20 fractions.

The standard regimens include 30 Gy in 10 fractions or 37.5 Gy in 15 fractions.

Nevertheless 20 Gv in 5 fractions is a good ontion for natients with poor predicted prognosis 19

For patients with a better prognosis, consider memantine during and after WBRT for a total of 6 months.²⁰

For patients with a better prognosis (4 months or greater), consider hippocampal-sparing WBRT. ²¹⁻²²

For brain metastasis patients eligible to receive WBRT and whose survival is expected to be 4 months or longer, hippocampal avoidance using IMRT should be considered standard of care.

- Contributes to debate over SRS vs. WBRT for brain metastases
 - RTOG 0614: HR=0.78 with addition of memantine to WBRT
 - NRG CC001: HR=0.74 with addition of HA to WBRT+memantine
 - Combined HR with memantine+HA = 0.78 x 0.74 = 0.58

Comparable to phase III trials favoring SRS in lieu of WBRT

CCTG CE.7: Phase III Trial Stereotactic Radiosurgery versus Hippocampal Avoidant WBRT+memantine for 5-15 Brain Metastases

<u>Basic Eligibility</u>: 5-15 brain mets; largest met <2.5cm; total brain met vol ≤30cc

- Contributes to debate over SRS vs. WBRT for brain metastases
 - RTOG 0614: HR=0.78 with addition of memantine to WBRT
 - NRG CC001: HR=0.74 with addition of HA to WBRT+memantine
 - Combined HR with memantine+HA = 0.78 x 0.74 = 0.58

Comparable to phase III trials favoring SRS in lieu of WBRT

- Evidence strongly supports hippocampal radiosensitivity
 - Radiosensitivity of regenerative stem cell niche in the hippocampal dentate gyrus is central to cognitive effects of brain irradiation
 - Builds upon decades of preclinical/clinical research on the pathophysiology of hippocampal radiosenstivity

Supports the hippocampus as a cognition-specific organ at risk for all forms of brain irradiation

NRG CC001 Accrual

Accrual 16 pts/month Completed 2 years earlier than projected Community's interest in developing safer approaches to deliver WBRT

Q & A

Use the "Question" tab in GoToWebinar to submit your questions.

Cancer Breakthroughs - Takeaways from the Major Oncology Meetings of 2019

A preview of Wednesday's presentations

Theodore L. DeWeese, MD, FASTRO

Chair, ASTRO Board of Directors

Vice Dean for Clinical Affairs, Sidney Kimmel Professor and Director of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine

Cancer Breakthroughs Takeaways from 2019's Major Oncology Meetings

- Wednesday, 9:15-11:00 a.m., General Session room (W375)
- Scientific reviews of research highlights from major oncology associations
 - ASCO: American Society of Clinical Oncology
 - AACR: American Association for Cancer Research
 - AAPM: The American Association of Physicists in Medicine
 - RRS (RADRES): Radiation Research Society

Research Highlights from ASCO

Phase III MONALEESA-7 trial of premenopausal patients with HR+/HER2- advanced breast cancer (ABC) treated with endocrine therapy ? ribociclib: Overall survival (OS) results

Phase 3 international trial of adjuvant whole brain radiotherapy (WBRT) or observation following local treatment of 1-3 melanoma brain metastases (MBMs)

To be presented by Lori Pierce, MD, ASCO President-elect

Research Highlights from AACR

A dose escalation trial of the wee1 inhibitor AZD1775, in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer Identifying molecular determinants of response to apalutamide in patients with nonmetastatic castrationresistant prostate cancer in the SPARTAN study

To be presented by Robert Den, MD

Research Highlights from AAPM

Multiparametric breast MRI radiomics in distinguishing between benign and malignant breast lesions First human imaging studies with the EXPLORER total-body PET scanner

To be presented by Kristy Brock, PhD

Research Highlights from RRS

Flash-radiation therapy (ultrahigh dose rate) protects normal tissue without compromising tumor control: Mechanisms and clinical perspectives Dissecting mechanisms of response and resistance to radiation and immunotherapy

To be presented by David Kirsch, MD, PhD, FASTRO

Q & A

Use the "Question" tab in GoToWebinar to submit your questions.

More information and press materials:

www.astro.org/ASTRO19press press@astro.org 703-286-1600