A Randomized Trial of Radiotherapy vs. Trans-Oral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma (ORATOR)

Human Papillomavirus

• HPV is the most common sexually transmitted infection

• At least 80% of adults who have been sexually active have been exposed
 • Since infections can be transient, some experts believe the true exposure rate is near 100%

• HPV causes cancers of the cervix, vagina, penis, anus, vulva, and oropharynx
The Oropharynx

Risk factors for oropharyngeal HPV infection:
- Number of sexual (including oral sex) partners
- Number of open-mouthed kissing partners
- Older age
- Tobacco
- Marijuana
CDC: HPV-related cancers increasing

HPV-associated cancers have increased to nearly 43,000 people annually in the US.
Most can be prevented by the HPV vaccine.

https://wwwnc.cdc.gov/eid/article/16/11/10-0452-f3
Treatment: Older Surgical Techniques
Chemotherapy + Radiation

- Standard treatment at most centres has been 7 weeks of radiation with high-dose chemotherapy
A Patient’s Perspective

• Nearly all of our interaction with the world is done through our face
• Our neck and mouth are critical for self-image
 • “I can’t eat with others”
 • “I can’t go to restaurants”
 • “Meals take me hours to eat”
 • “I tube feed myself for 8 hours at night”
 • “I need to carry a water bottle at all times”
 • “My mouth is too dry to do my job in sales”
 • “I have ongoing pain”
 • “Am I the same person?”
Trans-Oral Robotic Surgery (TORS)
Trans-Oral Robotic Surgery (TORS)

Have HPV-related oral cancer? The robot will see you now

In a Mayo Clinic study, robotic surgery appeared less debilitating than traditional, more invasive surgery and radiation therapy. The surgeons now plan to offer robot docs as a primary treatment.
Radiation Has Also Improved
Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base.

Cracchiolo JR, Baxi SS, Morris LG, Ganly I, Patel SG, Cohen MA, Roman BR.

<table>
<thead>
<tr>
<th>Year diagnosed</th>
<th>No. (Column %)</th>
<th>No. (Row % Compared With Primary XRT [Not Shown])</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>568 (6.5%)</td>
<td>319 (56.2%)</td>
</tr>
<tr>
<td>2005</td>
<td>644 (7.3%)</td>
<td>354 (55%)</td>
</tr>
<tr>
<td>2006</td>
<td>674 (7.7%)</td>
<td>400 (59.3%)</td>
</tr>
<tr>
<td>2007</td>
<td>747 (8.5%)</td>
<td>431 (57.7%)</td>
</tr>
<tr>
<td>2008</td>
<td>1052 (12%)</td>
<td>674 (64.1%)</td>
</tr>
<tr>
<td>2009</td>
<td>1174 (13.4%)</td>
<td>792 (67.5%)</td>
</tr>
<tr>
<td>2010</td>
<td>939 (10.7%)</td>
<td>651 (69.3%)</td>
</tr>
<tr>
<td>2011</td>
<td>979 (11.2%)</td>
<td>724 (74%)</td>
</tr>
<tr>
<td>2012</td>
<td>970 (11.1%)</td>
<td>784 (80.8%)</td>
</tr>
<tr>
<td>2013</td>
<td>1021 (11.6%)</td>
<td>838 (82.1%)</td>
</tr>
</tbody>
</table>
Randomized Data Lacking

• Prior to ORATOR, no randomized trials compared primary surgery to primary radiation for oropharyngeal cancer

Purpose

• To compare swallowing quality of life (QOL) at 1-year for patients undergoing a primary radiotherapy approach versus a primary TORS approach
Patients with early T-stage squamous cell carcinoma of the oropharynx, meeting inclusion criteria

Randomize

ARM 1: Radiotherapy ± Chemotherapy
With surgical treatment for salvage of persistent disease

Follow-up for QOL and Survival

ARM 2: Transoral Robotic Surgery + Neck Dissection
With adjuvant radio(chemo)therapy based on pathological findings

Follow-up for QOL and Survival
Main Inclusion Criteria

- Squamous cell carcinoma of the oropharynx
- Tumor stage: T1 or T2, with likely negative resection margins
- Nodal stage: N0, N1, or N2
 - < 4 cm, no ECS on pre-randomization imaging
Arm 1 - Radiation

- T1-2 N0: Radiation Alone (70 Gy)
- T1-2 N1-2: Chemoradiation (high dose cisplatin preferred)
Arm 2 – Primary Surgery

• TORS of primary site with neck dissection

Adjuvant Therapy

• **Radiation:** close resection margins (<2 mm), positive lymph nodes, lymphovascular invasion, pT3-4 disease
• **Chemoradiation:** extranodal extension, positive margins
Endpoints

Primary Endpoint
- Quality of life 1-year post-treatment
 - Assessed with the MD Anderson Dysphagia Inventory (MDADI)

Secondary Endpoints
- Overall and progression-free survival
- Quality of life at other time points
 - MDADI, the EORTC QLQ-C30 and H&N35 scales, the Voice Handicap Index (VHI-10), the Neck Dissection Impairment Index (NDII), and the Patient Neurotoxicity Questionnaire (PNQ), audiology
- CTCAE Toxicity
- Feeding tube rate at 1-year
Endpoints

Primary Endpoint
• Quality of life 1-year post-treatment
 • Assessed with the MD Anderson Dysphagia Inventory (MDADI)

Secondary Endpoints
• Overall and progression-free survival
• Quality of life at other time points
 • MDADI, the EORTC QLQ-C30 and H&N35 scales, the Voice Handicap Index (VHI-10), the Neck Dissection Impairment Index (NDII), and the Patient Neurotoxicity Questionnaire (PNQ), audiology
• CTCAE Toxicity
• Feeding tube rate at 1-year

Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial

Anthony C Nichols, Julie Thuerer, Eitan Prisman, Nancy Read, Eric Berthelet, Eric Tran, Kevin Fung, John R de Almeida, Andrew Bayley, David P Goldstein, Michael Hier, Khalil Sultanem, Keith Richardson, Alex Myhre, Suren Krishna, Hien Le, John Yao, S Danielle MacNeil, Eric Winquist, J Alex Hammond, Varagor Venkatesan, Sara Kanavilla, Andrew Warner, Sylvia Mitchell, Jeff Chen, Martin Corsten, Stephanie Johnson-Olusoji, Libby Egan, Michael Odeh, Christina Parker, Bret Wehrli, Keith Kwon, David A Palma
Primary Endpoint (MDADI) Comparisons in Specific Subsets

• MDADI scores based on treatment intensity
• Site of primary tumor (tonsil vs. BOT)
• T1 vs. T2
• N0 vs. N+
The MDADI: Important Outcomes for Patients

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>No Opinion</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>My swallowing ability limits my day-to-day activities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2. I am embarrassed by my eating habits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1. People have difficulty cooking for me.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2. Swallowing is more difficult at the end of the day.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Size and Analyses

- The primary endpoint was a definitive QOL comparison using total MDADI scores at 1-year.

- A 10-point difference was pre-specified as a clinically meaningful change (CMC).

- In order to detect a 10-point improvement in QOL in the TORS arm (Arm 2), a total of **68 patients** were required (34 in each arm).

 (Two-sided, independent-sample t-test with an alpha level of 0.05 and power of 90%, and assumed dropout rate of 10%)
Results
Between 2012 and 2017, 68 patients were randomized at 6 centres in Canada and Australia

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients (n=68)</th>
<th>RT Arm (n=34)</th>
<th>TORS+ ND Arm (n=34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – median (interquartile range)</td>
<td>58.5 (52.9, 65.2)</td>
<td>60.0 (53.2, 65.2)</td>
<td>58.1 (52.6, 64.5)</td>
</tr>
<tr>
<td>p16 Status</td>
<td>60/68</td>
<td>30/34</td>
<td>30/34</td>
</tr>
<tr>
<td>Gender – n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>59 (87)</td>
<td>31 (91)</td>
<td>28 (82)</td>
</tr>
<tr>
<td>Female</td>
<td>9 (13)</td>
<td>3 (9)</td>
<td>6 (18)</td>
</tr>
<tr>
<td>Smoking History – n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>17 (25)</td>
<td>8 (24)</td>
<td>9 (26)</td>
</tr>
<tr>
<td>Previous (> 1 year since quit)</td>
<td>32 (47)</td>
<td>20 (59)</td>
<td>12 (35)</td>
</tr>
<tr>
<td>Non-Smoker</td>
<td>19 (28)</td>
<td>6 (18)</td>
<td>13 (38)</td>
</tr>
</tbody>
</table>
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients (n=68)</th>
<th>RT Arm (n=34)</th>
<th>TORS +ND Arm (n=34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonsil</td>
<td>50 (74)</td>
<td>26 (76)</td>
<td>24 (71)</td>
</tr>
<tr>
<td>Base of Tongue</td>
<td>18 (26)</td>
<td>8 (24)</td>
<td>10 (29)</td>
</tr>
<tr>
<td>Clinical T Stage – n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>30 (44)</td>
<td>13 (38)</td>
<td>17 (50)</td>
</tr>
<tr>
<td>T2</td>
<td>38 (56)</td>
<td>21 (62)</td>
<td>17 (50)</td>
</tr>
<tr>
<td>Clinical N Stage – n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>21 (31)</td>
<td>12 (35)</td>
<td>9 (26)</td>
</tr>
<tr>
<td>N1</td>
<td>12 (18)</td>
<td>5 (15)</td>
<td>7 (21)</td>
</tr>
<tr>
<td>N2</td>
<td>35 (51)</td>
<td>17 (50)</td>
<td>18 (53)</td>
</tr>
</tbody>
</table>
MDADI Scores

<table>
<thead>
<tr>
<th>Variable</th>
<th>1-Year – mean ± SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT Arm</td>
<td>TORS Arm</td>
</tr>
<tr>
<td>Total (Primary Endpoint)</td>
<td>86.9 ± 11.4</td>
<td>80.1 ± 13.0</td>
</tr>
</tbody>
</table>
Overall Summary of Secondary Endpoints

Favor RT
- Swallowing
 - MDADI
 - FOIS
- Less pain and pain medication use
- No bleeding
- Less Trismus
- Trend towards less shoulder impairment

Favor Surgery
- Less Tinnitus and Hearing Loss
- Less neutropenia
- Less constipation

Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial

Anthony J. Nichols, Julie Theurer, Eitan Pirson, Nancy Reed, Eric Berthelet, Eric Tran, Kevin Fung, John R. de Almeida, Andrew Rayleigh, David P. Goldstein, Michael Hee, Khalfi Sukrani, Keith Richardson, Alex Mlynek, Suren Kiranwala, Hien Le, John Foo, S. Danielle MacNeill, Eric Wingett, J. Alex Hammond, Vangur Verikste, Sara Runvalla, Andrew Winzer, Sylvia Mitchell, Jeff Chen, Martin Cotten, Stephanie Johnson-Obeiseki, Libni Esper, Michael Osell, Christina Parker, Brett Wehrli, Keith Kwan, David A. Palma
Median MDADI Scores by Treatment Intensity

(n=9) (n=23) (n=10) (n=16) (n=8)
MDADI Scores by Disease Site

Tonsil or Tonsillar Fossa

- RT Arm
- TORS+ND Arm
- **p = 0.463**

Base of Tongue

- RT Arm
- TORS+ND Arm
- **p < 0.001**

Number of completed surveys:
- RT: 24, 21, 20, 16, 12, 9, 7, 6
- TORS+ND: 21, 23, 22, 14, 14, 9, 7, 6

Curves truncated when n<5
MDADI Scores by T-Stage

Clinical T1

- RT Arm
- TORS+ND Arm
- \(p = 0.294 \)

Clinical T2

- RT Arm
- TORS+ND Arm
- \(p = 0.334 \)

*Curves truncated when \(n < 5 \)
MDADI Scores by N-Stage

Clinical N0

MDADI Total

Time (Years)

RT Arm
TORS+ND Arm

p = 0.423

Number of completed surveys
RT 10 8 7 8 6 5
TORS+ND 8 9 8 7 6 6

Clinical N+

MDADI Total

Time (Years)

RT Arm
TORS+ND Arm

p < 0.001

Number of completed surveys
RT 22 21 20 12 8 5
TORS+ND 23 24 22 14 11 5 5

*Curves truncated when n<5
Discussion
Take Home Messages

• Previous assertions that TORS is superior to RT appear incorrect
 • In subset analyses today, we were unable to identify a group where TORS is superior

• Our evidence suggests that the widespread adoption of TORS in the U.S. was been premature

• The pros and cons of BOTH modalities need to be discussed with all patients with OPSCC.
Upcoming Data: De-Escalation

ORATOR2

Current Accrual
34/140

Patients with p16-positive squamous cell carcinoma of the oropharynx (T1-2, N0-2, M0 AJCC 8th edition)

Randomize (stratify by smoking status)

ARM 1
- Radiotherapy (60 Gy)
- Weekly cisplatin if multiple nodes positive or single lymph node >3 cm
- Surgical treatment for salvage of persistent disease

ARM 2
- Transoral Surgery and Neck Dissection
- Adjuvant RT (50-60 Gy) based on risk factors

2019 AMERICAN SOCIETY FOR RADIATION ONCOLOGY (ASTRO) ANNUAL MEETING
A Randomized Trial of Radiotherapy vs. Trans-Oral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma (ORATOR)