A Randomized Trial of Radiotherapy vs. Trans-Oral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma (ORATOR)

<u>D. Palma</u>, J. Theurer, E. Prisman, N. Read, E. Berthelet, E. Tran, K. Fung, J. de Almeida, A. Bayley, D. Goldstein, M. Hier, K. Sultanem, K. Richardson, A. Mlynarek, S. Krishnan, H. Le, J. Yoo, S.D. MacNeil, E. Winquist, J. A. Hammond, V. Venkatesan, S. Kuruvilla, A. Warner, S. Mitchell, J. Chen, M. Corsten, S. Johnson-Obaseki, L. Eapen, M. Odell, C. Parker, B. Wehrli, K. Kwan, <u>A. Nichols</u>

Human Papillomavirus

- HPV is the most common sexually transmitted infection
- At least 80% of adults who have been sexually active have been exposed
 - Since infections can be transient, some experts believe the true exposure rate is near 100%
- HPV causes cancers of the cervix, vagina, penis, anus, vulva, and oropharynx

The Oropharynx

Risk factors for oropharyngeal HPV infection:

- Number of sexual (including oral sex) partners
- Number of open-mouthed kissing partners
- Older age
- Tobacco
- Marijuana

CDC: HPV-related cancers increasing

Treatment: Older Surgical Techniques

Chemotherapy + Radiation

 Standard treatment at most centres has been 7 weeks of radiation with high-dose chemotherapy

A Patient's Perspective

- Nearly all of our interaction with the world is done through our face
- Our neck and mouth are critical for self-image
 - "I can't eat with others"
 - "I can't go to restaurants"
 - "Meals take me hours to eat"
 - "I tube feed myself for 8 hours at night"
 - "I need to carry a water bottle at all times"
 - "My mouth is too dry to do my job in sales"
 - "I have ongoing pain"
 - "Am I the same person?"

Trans-Oral Robotic Surgery (TORS)

Trans-Oral Robotic Surgery (TORS)

CNET → News → Health Tech

Have HPV-related oral cancer? The robot will see you now

In a Mayo Clinic study, robotic surgery appeared less debilitating than traditional, more invasive surgery and radiation therapy. The surgeons now plan to offer robot docs as a primary treatment.

Radiation Has Also Improved

Rise of Transoral Robotic Surgery (TORS) and Laser Microsurgery (TLM)

Cancer. 2016 May 15;122(10):1523-32. doi: 10.1002/cncr.29938. Epub 2016 Mar 11.

Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base.

Cracchiolo JR¹, Baxi SS², Morris LG¹, Ganly I¹, Patel SG¹, Cohen MA^{1,3}, Roman BR¹.

	Overall	Primary Surgical Treatment (Versus Primary XRT)		
Characteristic	No. (Column %)	No. (Row % Compared With Primary XRT [Not Shown])	P ^a	
Year diagnosed			<.0001	
2004	568 (6.5%)	319 (56.2%)		
2005	644 (7.3%)	354 (55%)		
2006	674 (7.7%)	400 (59.3%)		
2007	747 (8.5%)	431 (57.7%)		
2008	1052 (12%)	674 (64.1%)		
2009	1174 (13.4%)	792 (67.5%)		
2010	939 (10.7%)	651 (69.3%)		
2011	979 (11.2%)	724 (74%)		
2012	970 (11.1%)	784 (80.8%)		
2013	1021 (11.6%)	838 (82.1%)		

Randomized Data Lacking

• Prior to ORATOR, no randomized trials compared primary surgery to primary radiation for oropharyngeal cancer

<u>Purpose</u>

• To compare swallowing quality of life (QOL) at 1-year for patients undergoing a primary radiotherapy approach versus a primary TORS approach

ORATOR Schema

Main Inclusion Criteria

- Squamous cell carcinoma of the oropharynx
- Tumor stage: T1 or T2, with likely negative resection margins
- Nodal stage: N0, N1, or N2
 - < 4 cm, no ECS on pre-randomization imaging

Arm 1 - Radiation

- T1-2 N0: Radiation Alone (70 Gy)
- T1-2 N1-2: Chemoradiation (high dose cisplatin preferred)

Arm 2 – Primary Surgery

• TORS of primary site with neck dissection

Adjuvant Therapy

- **Radiation:** close resection margins (<2 mm), positive lymph nodes, lymphovascular invasion, pT3-4 disease
- **Chemoradiation:** extranodal extension, positive margins

Endpoints

Primary Endpoint

- Quality of life 1-year post-treatment
 - Assessed with the MD Anderson Dysphagia Inventory (MDADI)

Secondary Endpoints

- Overall and progression-free survival
- Quality of life at other time points
 - MDADI, the EORTC QLQ-C30 and H&N35 scales, the Voice Handicap Index (VHI-10), the Neck Dissection Impairment Index (NDII), and the Patient Neurotoxicity Questionnaire (PNQ), audiology
- CTCAE Toxicity
- Feeding tube rate at 1-year

Endpoints

• Feeding tube rate at 1-year

Today's Presentation

Primary Endpoint (MDADI) Comparisons in Specific Subsets

- MDADI scores based on treatment intensity
- Site of primary tumor (tonsil vs. BOT)
- T1 vs. T2
- N0 vs. N+

The MDADI: Important Outcomes for Patients

My swallowing ability limits my day-to-day activities.

Strongly Agree	Agree	No Opinion	Disagree	Strongly Disagree
----------------	-------	------------	----------	-------------------

E2. I am embarrassed by my eating habits.

	Strongly Agree	No Opinion Disagree	Strongly Disagree
--	----------------	---------------------	-------------------

F1. People have difficulty cooking for me.

Strongly Agree	Agree	No Opinion	Disagree	Strongly Disagree
----------------	-------	------------	----------	-------------------

P2. Swallowing is more difficult at the end of the day.

E7. I do not feel self-conscious when I eat.

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Sample Size and Analyses

- The primary endpoint was a definitive QOL comparison using total MDADI scores at 1-year
- A 10-point difference was pre-specified as a clinically meaningful change (CMC)
- In order to detect a 10-point improvement in QOL in the **TORS arm** (Arm 2), a total of **68 patients** were required (34 in each arm).

(Two-sided, independent-sample t-test with an alpha level of 0.05 and power of 90%, and assumed dropout rate of 10%)

Results

Baseline Characteristics

Between 2012 and 2017, 68 patients were randomized at 6 centres in Canada and Australia

<u>Characteristic</u>	<u>All Patients</u> (n=68)	<u>RT Arm</u> <u>(n=34)</u>	<u>TORS+ ND Arm</u> <u>(n=34)</u>
Age – median (interquartile range)	58.5 (52.9 <i>,</i> 65.2)	60.0 (53.2, 65.2)	58.1 (52.6, 64.5)
p16 Status	60/68	30/34	30/34
Gender – n(%)			
Male	59 (87)	31 (91)	28 (82)
Female	9 (13)	3 (9)	6 (18)
Smoking History – n(%)			
Current	17 (25)	8 (24)	9 (26)
Previous (> 1 year since quit)	32 (47)	20 (59)	12 (35)
Non-Smoker	19 (28)	6 (18)	13 (38)

Baseline Characteristics

Characteristic	All Patients	<u>RT Arm</u>	TORS +ND Arm
	<u>(n=68)</u>	<u>(n=34)</u>	<u>(n=34)</u>
Tonsil	50 (74)	26 (76)	24 (71)
Base of Tongue	18 (26)	8 (24)	10 (29)
Clinical T Stage – n(%)			
T1	30 (44)	13 (38)	17 (50)
T2	38 (56)	21 (62)	17 (50)
Clinical N Stage – n(%)			
NO	21 (31)	12 (35)	9 (26)
N1	12 (18)	5 (15)	7 (21)
N2	35 (51)	17 (50)	18 (53)

MDADI Scores

Variable	1-Year – mean ± SD			
variable	RT Arm	TORS Arm	P- value	
Total (Primary Endpoint)	86.9 ± 11.4	80.1 ± 13.0	0.04	

Overall Summary of Secondary Endpoints

Favor RT

- Swallowing
 - MDADI
 - FOIS
- Less pain and pain medication use
- No bleeding
- Less Trismus
- Trend towards less shoulder impairment

Favor Surgery

- Less Tinnitus and Hearing Loss
- Less neutropenia
- Less constipation

Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial

Anthony C Nichols, Julie Theurer, Eitan Prisman, Nancy Read, Eric Berthelet, Eric Tran, Kevin Fung, John R de Almeida, Andrew Bayley, David P Goldstein, Michael Hier, Khalil Sultanem, Keith Richardson, Alex Mlynarek, Suren Krishnan, Hien Le, John Yoo, S Danielle MacNeil, Eric Winquist, J Alex Hammond, Varagur Venkatesan, Sara Kuruvilla, Andrew Warner, Sylvia Mitchell, Jeff Chen, Martin Corsten, Stephanie Johnson-Obaseki, Libni Eapen, Michael Odell, Christina Parker, Bret Wehrli, Keith Kwan, David A Palma

Median MDADI Scores by Treatment Intensity

MDADI Scores by Disease Site

*Curves truncated when n<5

MDADI Scores by T-Stage

*Curves truncated when n<5

MDADI Scores by N-Stage

*Curves truncated when n<5

Discussion

Take Home Messages

- Previous assertions that TORS is superior to RT appear incorrect
 - In subset analyses today, we were unable to identify a group where TORS is superior
- Our evidence suggests that the widespread adoption of TORS in the U.S. was been premature
- The pros and cons of BOTH modalities need to be discussed with all patients with OPSCC.

Upcoming Data: De-Escalation

A Randomized Trial of Radiotherapy vs. Trans-Oral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma (ORATOR)

<u>D. Palma</u>, J. Theurer, E. Prisman, N. Read, E. Berthelet, E. Tran, K. Fung, J. de Almeida, A. Bayley, D. Goldstein, M. Hier, K. Sultanem, K. Richardson, A. Mlynarek, S. Krishnan, H. Le, J. Yoo, S.D. MacNeil, E. Winquist, J. A. Hammond, V. Venkatesan, S. Kuruvilla, A. Warner, S. Mitchell, J. Chen, M. Corsten, S. Johnson-Obaseki, L. Eapen, M. Odell, C. Parker, B. Wehrli, K. Kwan, <u>A. Nichols</u>

