Significant Preservation of Neurocognitive Function and Patient-Reported Symptoms with Hippocampal Avoidance during Whole-Brain Radiotherapy for Brain Metastases: Final Results of NRG Oncology CC001

Vinai Gondi, MD*, Stephanie Pugh, PhD, Paul D. Brown, MD*, Jeffrey S. Wefel, PhD, Wolfgang A. Tome, PhD, Terri S. Armstrong, PhD, Deborah W. Bruner, PhD, Joseph A. Bovi, MD, Cliff G. Robinson, MD, Deepak Khuntia, MD, David R. Grosshans, MD, PhD, Andre A. Konski, MD, MBA, David Roberge, MD, Vijayananda Kundapur, MD, Kiran Devisetty, MD, Sunjay A. Shah, MD, Kenneth Y. Usuki, MD, Bethany M. Anderson, MD, Minesh P. Mehta, MD, Lisa A. Kachnic, MD

*Co-Principal Investigators contributed equally to this work.
Special Thanks to Snehal Deshmukh, MS of NRG Oncology Biostatistics.
Disclosures for Dr. Gondi

• Partnership, Radiation Oncology Consultants, LLC; Honoraria, UpToDate; Honoraria/Travel expenses: Physicians’ Education Resource
Background

• Whole-brain radiotherapy is associated with cognitive toxicity
 • 1-4 brain metastases: N05741, N107C2, MD Anderson trial3
 • Declining use of WBRT, rising use of radiosurgery

• Neuroregenerative stem cells within the hippocampal dentate gyrus are exquisitely radiosensitive and important to cognition
 • Preclinical/clinical evidence supports the hippocampal dentate gyrus as a memory-specific and radiosensitive structure-at-risk4

Hypothesis: Hippocampal avoidance using IMRT prevents cognitive toxicity from WBRT

1Brown et al. JAMA 2016
2Brown et al. Lancet Oncol 2017
3Chang et al. Lancet Oncol 2009
4Gondi et al. R&O 2010
RTOG 0933

- Single-arm phase II trial of HA-WBRT (30 Gy in 10 fractions)
 - Credentialing and central review of hippocampal contouring and IMRT planning

- Mean decline in HVLT-Delayed Recall from baseline to 4 months: 7.0% (95% CI: -4.7-18.7%)
 - Significantly less compared to historical control: 30% ($p=0.0003$)

Need phase III data for level I evidence

Gondi et al. JCO 2014
RTOG 0614

- Phase III trial of WBRT with or without memantine

Memantine during WBRT considered standard of care

Brown et al. Neuro-Oncol 2013
NRG-CC001: Phase III Trial Memantine and WBRT with or without Hippocampal Avoidance in Patients with Brain Metastases

Basic Eligibility: Brain metastases 5mm outside hippocampus; KPS \(\geq \) 70; 3D MRI scan; hydrocephalus/ventricular distortion excluded; baseline NCF testing

Brain Metastasis → Stratify

- RPA
- Prior Therapy

Randomize

- WBRT 30Gy + Memantine
- HA-WBRT 30Gy + Memantine
Trial Design

• Primary endpoint: Time to cognitive failure
 • Cognitive battery: Hopkins Verbal Learning Test-Revised, Controlled Oral Word Association, Trail Making Test
 • Cognitive failure: reliable change index defined decline on one or more tests
 • Cumulative incidence to estimate time to cognitive failure
 • Death without cognitive failure treated as competing risk
 • Secondary endpoints: patient-reported symptom burden (MDASI-BT), toxicity, progression-free and overall survival

• Probability of cognitive failure
 • Overall HR = 0.65
 • 382 analyzable patients for 90% power and two-sided α=0.05
 • Sample size increased by 25% for possible non-compliance

Target Accrual: 510 patients
Baseline Characteristics

518 randomized patients

<table>
<thead>
<tr>
<th>Baseline</th>
<th>WBRT+Mem n=257</th>
<th>HA-WBRT+Mem n=261</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Median 61</td>
<td>Median 62</td>
<td>0.66</td>
</tr>
<tr>
<td>RPA class</td>
<td>Class I: 14.8%</td>
<td>Class I: 12.6%</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Class II: 85.2%</td>
<td>Class II: 87.4%</td>
<td></td>
</tr>
<tr>
<td>Neurologic symptoms</td>
<td>None: 46.3%</td>
<td>None: 43.3%</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>Minor: 33.5%</td>
<td>Minor: 35.2%</td>
<td></td>
</tr>
<tr>
<td>Primary tumor</td>
<td>Lung 58.8%</td>
<td>Lung 59.8%</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Breast 17.5%</td>
<td>Breast 19.5%</td>
<td></td>
</tr>
<tr>
<td>KPS</td>
<td>70: 20.6%</td>
<td>70: 18.4%</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>80: 29.2%</td>
<td>80: 31.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90-100: 50.2%</td>
<td>90-100: 50.6%</td>
<td></td>
</tr>
</tbody>
</table>

No differences in baseline patient characteristics, including cognitive function and patient-reported symptom burden
Toxicity

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>WBRT+Mem n=257</th>
<th>HA-WBRT+Mem n=261</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any relation</td>
<td>Grade 3: 89 (38.4%)</td>
<td>Grade 3: 70 (31.4%)</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Grade 4: 20 (8.6%)</td>
<td>Grade 4: 25 (11.2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 5: 35 (15.1%)</td>
<td>Grade 5: 36 (16.1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 3+: 144 (62.1%)</td>
<td>Grade 3+: 131 (58.7%)</td>
<td></td>
</tr>
<tr>
<td>Treatment-related toxicity</td>
<td>Grade 3: 36 (15.5%)</td>
<td>Grade 3: 36 (16.1%)</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>Grade 4: 7 (3.0%)</td>
<td>Grade 4: 4 (1.8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 5: 3 (1.3%)</td>
<td>Grade 5: 3 (1.3%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 3+: 46 (19.8%)</td>
<td>Grade 3+: 43 (19.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Treatment-related grade 5 toxicities:
- WBRT+mem: Neoplasms benign, malignant and unspecified (n=3)
- HA-WBRT+mem: Gen d/o’s and administration site conditions (n=2, possible)
 Somnolence (n=1, possible, 64d after tx start)

No differences in any or treatment-related toxicity
Primary Endpoint

- Hippocampal avoidance prevents cognitive function failure
 - Hazard ratio = 0.756 \(p=0.029 \)
 - Separation of the curves starting at 3 months and maintained through the follow-up period

Median follow-up for alive patients: **12.1 months**
Primary Endpoint

- Hippocampal avoidance prevents cognitive function failure
 - 26% relative risk reduction
- Multivariate analysis: Treatment arm and age
- No interaction between treatment arm and age
 - Effect of treatment remains significant independent of age

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment arm (HA-WBRT+Mem vs. WBRT+Mem[RL])</td>
<td>0.74</td>
<td>0.58-0.94</td>
<td>0.016</td>
</tr>
<tr>
<td>Age (≤61 vs. >61[RL])</td>
<td>0.61</td>
<td>0.47-0.80</td>
<td>0.0003</td>
</tr>
<tr>
<td>RPA Class* (I vs. II[RL])</td>
<td>1.36</td>
<td>0.98-1.87</td>
<td>0.063</td>
</tr>
<tr>
<td>Prior radiosurgery* (No vs. Yes[RL])</td>
<td>0.82</td>
<td>0.62-1.08</td>
<td>0.158</td>
</tr>
<tr>
<td>Prior surgery* (No vs. Yes[RL])</td>
<td>1.10</td>
<td>0.84-1.44</td>
<td>0.504</td>
</tr>
</tbody>
</table>

*Stratification factor [RL]: Reference level

Median follow-up for alive patients: **12.1 months**
Hippocampal avoidance reduces deterioration of
 4 months: Executive function (Trail Making Test B)

Cognition Domains at 4 Months

Deterioration at 4 months:

<table>
<thead>
<tr>
<th>Cognitive Domain</th>
<th>WBRT +Mem n=109</th>
<th>HA-WBRT +Mem n=93</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVLT-R Total Recall</td>
<td>35.5%</td>
<td>29.0%</td>
<td>0.33</td>
</tr>
<tr>
<td>HVLT-R Delayed Recall</td>
<td>33.0%</td>
<td>24.7%</td>
<td>0.19</td>
</tr>
<tr>
<td>HVLT-R Recognition</td>
<td>24.8%</td>
<td>14.0%</td>
<td>0.055</td>
</tr>
<tr>
<td>Trail Making Test Part A</td>
<td>24.8%</td>
<td>20.4%</td>
<td>0.46</td>
</tr>
<tr>
<td>Trail Making Test Part B</td>
<td>40.4%</td>
<td>23.3%</td>
<td>0.012</td>
</tr>
<tr>
<td>Controlled Oral Word Association</td>
<td>12.1%</td>
<td>10.5%</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Median follow-up for alive patients: **12.1 months**
Hippocampal avoidance reduces deterioration of
- 4 months: Executive function (Trail Making Test B)
- 6 months: Learning and memory (HVLT-R Recognition)

Deterioration at 6 months:

<table>
<thead>
<tr>
<th>Cognitive Domain</th>
<th>WBRT +Mem n=77</th>
<th>HA-WBRT +Mem n=61</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVLT-R Total Recall</td>
<td>26.8%</td>
<td>14.7%</td>
<td>0.07</td>
</tr>
<tr>
<td>HVLT-R Delayed Recall</td>
<td>30.0%</td>
<td>20.6%</td>
<td>0.19</td>
</tr>
<tr>
<td>HVLT-R Recognition</td>
<td>36.3%</td>
<td>17.6%</td>
<td>0.011</td>
</tr>
<tr>
<td>Trail Making Test Part A</td>
<td>28.0%</td>
<td>17.6%</td>
<td>0.13</td>
</tr>
<tr>
<td>Trail Making Test Part B</td>
<td>35.9%</td>
<td>23.9%</td>
<td>0.12</td>
</tr>
<tr>
<td>Controlled Oral Word Association</td>
<td>6.2%</td>
<td>11.8%</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Median follow-up for alive patients: **12.1 months**
Cognition Domains Over Time

- Hippocampal avoidance reduces deterioration of
 - 4 months: Executive function (Trail Making Test B)
 - 6 months: Learning and memory (HVLT-R Recognition)

- Hippocampal avoidance preserves all learning and memory domains over time
 - HVLT-R total recall, delayed recall and recognition

Mixed effects models using multiple imputation:

Higher score indicates better performance

Median follow-up for alive patients: **12.1 months**

2019 AMERICAN SOCIETY FOR RADIATION ONCOLOGY (ASTRO) ANNUAL MEETING
Hippocampal avoidance reduces deterioration of
- 4 months: Executive function (Trail Making Test B)
- 6 months: Learning and memory (HVLT-R Recognition)

Hippocampal avoidance preserves all learning and memory domains over time
- HVLT-R total recall, delayed recall and recognition

Mixed effects models using multiple imputation:

Higher score indicates better performance

Median follow-up for alive patients: **12.1 months**
Cognition Domains Over Time

- Hippocampal avoidance reduces deterioration of
 - 4 months: Executive function (Trail Making Test B)
 - 6 months: Learning and memory (HVLT-R Recognition)

- Hippocampal avoidance preserves all learning and memory domains over time
 - HVLT-R total recall, delayed recall and recognition

Mixed effects models using multiple imputation:

- $p=0.022$

Median follow-up for alive patients: **12.1 months**
Patient-Reported Symptom Burden

- Hippocampal avoidance preserves patient-reported symptoms at 6 months:
 - Neurologic symptom burden
 - Interference of neurologic symptoms in daily activities

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>p value</th>
<th>Estimate</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete Data</td>
<td></td>
<td>Imputed Data</td>
<td></td>
</tr>
<tr>
<td>Symptom</td>
<td>-0.26</td>
<td>0.083</td>
<td>-1.37</td>
<td><0.001*</td>
</tr>
<tr>
<td>Interference</td>
<td>-5.07</td>
<td>0.003*</td>
<td>-1.93</td>
<td>0.0016*</td>
</tr>
<tr>
<td>Cognitive factor</td>
<td>-0.05</td>
<td>0.77</td>
<td>-0.17</td>
<td>0.35</td>
</tr>
<tr>
<td>Neurologic factor</td>
<td>0.213</td>
<td>0.32</td>
<td>-0.13</td>
<td>0.56</td>
</tr>
</tbody>
</table>

*Significant using Hochburg’s multiplicity adjustment

Median follow-up for alive patients: 12.1 months
Patient-Reported Outcomes

- Hippocampal avoidance preserves patient-reported symptoms at 6 months:
 - Neurologic symptom burden
 - Interference of neurologic symptoms in daily activities

- Hippocampal avoidance preserves patient-reported cognitive factor over time:
 - Hippocampal avoidance associated with less problems remembering things at 6 months ($p=0.016$)

Mixed effects models using multiple imputation:

![Graph showing cognitive raw score over time]

Median follow-up for alive patients: **12.1 months**
Survival

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>WBRT+Mem n=257</th>
<th>HA-WBRT+Mem n=261</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial Progression-Free Survival</td>
<td>Median: 5.3 months 95% CI: 4.7-6.0</td>
<td>Median: 5.0 months 95% CI: 4.4-6.2</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>HR = 1.20 95% CI: 0.98-1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Survival</td>
<td>Median: 7.6 months 95% CI: 5.8-10.1</td>
<td>Median: 6.3 months 95% CI: 4.0-7.7</td>
<td>0.242</td>
</tr>
<tr>
<td></td>
<td>HR = 1.14 95% CI: 0.91-1.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No significant differences in intracranial PFS or overall survival

HA region relapses:
HA-WBRT+Mem 11 WBRT+Mem 17

Median follow-up for alive patients: **12.1 months**
Conclusions

- Hippocampal avoidance during WBRT plus memantine preserves cognitive function and patient-reported symptoms in brain metastasis patients
 - Improvements in patient-reported cognition over time and 6-month change in neurologic symptom burden, interference of neurologic symptoms with daily activities, and problems remembering things
 - Benefits in executive functioning at 4 mos, recognition at 4 and 6 mos, and all domains of learning and memory over time
 - Similar toxicity, intracranial PFS and overall survival outcomes

For brain metastasis patients eligible to receive WBRT and whose survival is expected to be 4 months or longer, hippocampal avoidance using IMRT should be considered standard of care.
Conclusions

For brain metastasis patients eligible to receive WBRT and whose survival is expected to be 4 months or longer, hippocampal avoidance using IMRT should be considered standard of care.
Conclusions

- Contributes to debate over SRS vs. WBRT for brain metastases
 - RTOG 0614: HR=0.78 with addition of memantine to WBRT
 - NRG CC001: HR=0.74 with addition of HA to WBRT+memantine
 - Combined HR with memantine+HA = 0.78 x 0.74 = 0.58

 Comparable to phase III trials favoring SRS in lieu of WBRT
CCTG CE.7: Phase III Trial Stereotactic Radiosurgery versus Hippocampal Avoidant WBRT+memantine for 5-15 Brain Metastases

Basic Eligibility: 5-15 brain mets; largest met <2.5cm; total brain met vol ≤30cc

Co-primary endpoints:
- Overall survival
- Neurocog-progression free survival

Sample Size: 206
Conclusions

- Contributes to debate over SRS vs. WBRT for brain metastases
 - RTOG 0614: HR=0.78 with addition of memantine to WBRT
 - NRG CC001: HR=0.74 with addition of HA to WBRT+memantine
 - Combined HR with memantine+HA = 0.78 x 0.74 = 0.58

 Comparable to phase III trials favoring SRS in lieu of WBRT

- Evidence strongly supports hippocampal radiosensitivity
 - Radiosensitivity of regenerative stem cell niche in the hippocampal dentate gyrus is central to cognitive effects of brain irradiation
 - Builds upon decades of preclinical/clinical research on the pathophysiology of hippocampal radiosensitivity

 Supports the hippocampus as a cognition-specific organ at risk for all forms of brain irradiation
NRG CC001 Accrual

Accrual 16 pts/month
Completed 2 years earlier than projected
Community’s interest in developing safer approaches to deliver WBRT

Thank you