

News Briefing Highlights from ASTRO 2019

Sunday, September 15, 2019 1:30-2:30 p.m. CT

News Briefing: Highlights from ASTRO 2019 (Sunday)

Moderator: Anthony Zietman, MD, FASTRO, Massachusetts General Hospital

Two Years of Anti-Androgen Treatment Increases Other-Cause Mortality in Men Receiving Early Salvage Radiotherapy: A Secondary Analysis of the NRG Oncology/RTOG 9601 Randomized Phase III Trial (Abstract LBA-1)

Daniel Spratt, University of Michigan Rogel Cancer Center

Primary Outcomes of a Phase II Randomized Trial of Observation versus Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer (ORIOLE) (Abstract LBA-3)

Ryan Phillips, Johns Hopkins Kimmel Cancer Center

Cosmetic Outcome from Post Lumpectomy Whole Breast Irradiation (WBI) Versus Partial Breast Irradiation (PBI) on the NRG Oncology/NSABP B39-RTOG 0413 Phase III Clinical Trial (Abstract 5)

Julia White, The Ohio State University Comprehensive Cancer Center

Longer Term Results from a Phase I/II Study of EP-guided Noninvasive Cardiac Radioablation for Treatment of Ventricular Tachycardia (ENCORE-VT) (Abstract LBA-4)

Clifford Robinson, Washington University School of Medicine in St. Louis

Two Years of Anti-Androgen Treatment Increases Other-Cause Mortality in Men Receiving Early Salvage Radiotherapy:

A Secondary Analysis of the NRG Oncology/ RTOG 9601 Randomized Phase III Trial

Daniel Spratt, MD University of Michigan Rogel Cancer Center

Disclosures for Dr. Spratt

- Employee at the University of Michigan
- Advisory board: Janssen and Blue Earth
- Funding: Janssen

Full author list:

D.E. Spratt,¹ R.T. Dess,¹ J.A. Efstathiou,² A.L. Zietman,³ D.G. Wallington,⁴ N.K. Jairath,⁵ W.C. Jackson,¹ R.B. Den,⁶,⁷ B.J. Stish,⁸ T.M. Morgan,⁹ J.J. Dignam,¹⁰ T.M. Pisansky,⁸ S.A. Rosenthal,¹¹ J.M. Michalski,¹² O. Sartor,¹³ F.Y. Feng,¹⁴ M. Schipper,¹⁵ H.M. Sandler,¹⁶ Y. Sun,¹⁷ and W.U. Shipley²

¹ Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, ² Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, ³ Massachusetts General Hospital, Boston, MA, ⁴ Western Michigan, Ann Arbor, MI, ⁵ University of Michigan, Ann Arbor, MI, ⁶ Dept of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, PA, ⁷ Thomas Jefferson, Philadelphia, PA, ⁸ Department of Radiation Oncology, Mayo Clinic, Rochester, MN, ⁹ Department of Urology, University of Michigan, Ann Arbor, MI, ¹⁰University of Chicago, Department of Public Health Sciences, Chicago, IL, ¹¹Sutter Medical Group and Cancer Center, Sacramento, CA, ¹²Washington University School of Medicine, St. Louis, MO, ¹³Tulane University, New Orleans, LA, ¹⁴Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, ¹⁵Michigan Medicine, Department of Radiation Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, ¹⁶Cedars Sinai Medical Center, Los Angeles, CA, ¹⁷Department of Biostatistics, University of Michigan, Ann Arbor, MI

Background

NRG Oncology/RTOG 96-01

Sample size: 760 patients Median follow up: 13 years Primary endpoint: Overall Survival

Methods

Secondary analysis of NRG Oncology/RTOG 9601 approval through the NCI

Developed *a priori* statistical plan to determine differential benefit and harm of antiandrogen treatment in men by entry PSA via statistical interaction tests

Early Salvage RT PSA subgroups:

Pre-specified protocol stratum: Median PSA on RTOG 9601: Median PSA of GETUG-16 & SPPORT:

Endpoints Assessed:

Overall Survival Other-Cause Mortality Distant Metastasis

0.2-1.5 ng/mL 0.2-0.6 ng/mL 0.2-0.3 ng/mL

Toxicity Assessment:

Grade 3-5 Cardiac Events Grade 3-5 Neurologic Events

Nguyen P, et al, Euro Urol 2015

Results

85% of trial was in the PSA 0.2-1.5 stratum

Results

Odds Ratio for Grade 3-5 Event

Conclusions

- Current guidelines recommend all men be offered hormone therapy when receiving salvage radiotherapy.
- Our data demonstrate that men with lower PSAs are more harmed then helped by long-term hormone therapy.
- We have now 3 randomized trials with over 2400 men total that do not demonstrate that short or long-term hormone therapy improves overall survival in men receiving early salvage radiotherapy at low PSAs.
- PSA prior to salvage radiotherapy predicts who will benefit most from hormone therapy.
 - Guidelines should change to reflect this finding.

Primary Outcomes of a Phase II Randomized Trial of Observation versus Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer (ORIOLE)

Ryan Phillips, MD, PhD Johns Hopkins Sidney Kimmel Cancer Center

Disclosures for Dr. Phillips

- Resident physician at Johns Hopkins University School of Medicine
- Consultant for RefleXion Medical, Inc.

Full author list:

R. Phillips,¹ S.J. Lim,² W.Y. Shi,³ E.S. Antonarakis,² S. Rowe,⁴ M. Gorin,⁵ C. Deville Jr,¹ S.C. Greco,¹ S. Denmeade,² C. Paller,² T.L. DeWeese,¹ D. Song,¹ H. Wang,² M. Carducci,² K. Pienta,² M.G. Pomper,⁴ A.P. Dicker,⁶ M. Eisenberger,² M. Diehn,³ and P.T. Tran¹

¹ Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, ² Johns Hopkins Medicine, Baltimore, MD, ³ Department of Radiation Oncology, Stanford University, Stanford, CA, ⁴ Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, ⁵ Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, ⁶ Thomas Jefferson University, Philadelphia, PA

Background

• Prostate cancer may spread to a few initial sites before widespread metastasis.

Background

• Eliminating sites of initial spread may help control or cure metastatic prostate cancer.

Trial design

- Eligibility:
 - Recurrent hormone-sensitive prostate cancer
 - 1-3 metastatic lesions ≤ 5 cm by CT, MRI, or bone scan
 - PSA doubling time < 15 months
 - ECOG performance status ≤ 2
- 54 men were randomized 2:1 to stereotactic ablative radiation (SABR) or observation for 6 months
- Follow-up every 3 months including H&P and PSA, with CT and bone scan performed at 6 months
- Correlative studies included prostate-specific membrane antigen (PSMA)-PET scans as well as analysis of T-cell repertoires and circulating tumor DNA.

SABR improved progression at 6 months and progression-free survival

	Progression at 6 months	P-value
SABR (n = 36)	19%	0.005
Observation (n = 18)	61%	

Progression defined as:

- PSA increase \geq 2 ng/mL AND \geq 25% above nadir
- Evidence of new metastases by CT, MRI, or bone scan
- Symptomatic progression
- Initiation of ADT for any reason

Number at risk					
SABR	36	26	13	7	2
Observation	18	8	1	1	0

About half of men who received SABR had additional lesions detectable by PSMA-PET

Total consolidation of PSMA-PET detected lesions decreased risk of new metastasis formation

Consolidation	New metastases at 6 months	P-value
Total (n = 19)	16%	0.006
Subtotal (n = 16)	63%	

SABR resulted in expansion of more T-cell clones, suggesting a systemic immune response

Presence of high-risk mutations by circulating tumor DNA was associated with progression after SABR

Conclusions

- SABR improves PFS in men with oligometastatic prostate cancer compared to observation alone.
- Total consolidation of PSMA radiotracer-avid lesions may decrease risk of new metastases and alter the natural history of this disease.
- SABR induced a systemic immune response in a prototypically "cold" tumor type.
- Continued biomarker development and validation may help us tailor individualized treatment approaches.

Expert Perspective

Anthony Zietman, MD, FASTRO

Editor in Chief, International Journal of Radiation Oncology•Biology•Physics

Cosmetic Outcome from Post Lumpectomy Whole Breast Irradiation (WBI) Versus Partial Breast Irradiation (PBI) on the NRG Oncology/NSABP B39-RTOG 0413 Phase III Clinical Trial

Julia White, MD, FASTRO

The Ohio State University Comprehensive Cancer Center

Disclosures for Dr. White

• I have no conflicts of interest to disclose.

Full author list:

Julia R. White, MD¹, Kathryn Winter, MS², Reena S Cecchini, PhD², Frank A Vicini, MD³, Douglas Arthur, MD⁴, Robert Kuske, MD⁵, Rachel Rabinovitch, MD⁶, Ashley Sekhon, MD⁷, Atif Khan, MD⁸, Steven Chmura, MD, PhD⁹, Simona F Shaitelman, MD¹⁰, Beryl McCormick, MD⁸, Thomas B. Julian, MD¹¹, C. Leland Rogers, MD¹², Harry D. Bear, MD, PhD⁴, Ivy A Petersen, MD¹³, Gregory S Gustafson, MD¹⁴, Linda Grossheim, MD¹⁵, Eleftherios P Mamounas, MD¹⁶, Patricia A Ganz, MD¹⁷

¹ Ohio State University Comprehensive Cancer Center; ² NRG Oncology Statistics and Data Management Center; ³ 21st Century Oncology MHP – Farmington; ⁴ Virginia Commonwealth University/Massey Cancer Center; ⁵ Arizona Breast Cancer Specialists-Scottsdale; ⁶ University of Colorado Cancer Center LAPS; ⁷ MetroHealth; ⁸ Memorial Sloan Kettering Cancer Center; ⁹ University of Chicago Medicine; ¹⁰ University of Texas MD Anderson Cancer Center, ¹¹ Allegheny Health Network; ¹² Arizona Oncology Services Foundation; ¹³ Mayo Clinic LAPS; ¹⁴ Beaumont NCI Community Oncology Research Program; ¹⁵ Cancer Research Consortium of West Michigan NCORP; ¹⁶ UF Health Cancer Center at Orlando Health; ¹⁷ UCLA Jonsson Comprehensive Cancer Center

NSABP B-39/RTOG 0413 Study Design

QOL SubStudy: Cosmetic Outcome Assessments

- 975 enrolled from March 2005 to May 2009
- 900 (420 CT and 480 no-CT) had baseline forms and at least one PT/Site MD/DP Review at 12 or 36 months
- Global Cosmetic Score (GCS): Patient (PT) and MD (Site)
 - 4 Point Scale NRG-RTOG
 - 1-Excellent, 2-Good, 3-Fair, 4-Poor
- Digital Photos (DP):
 - Both breasts and close-up of treated breast
 - Submitted separate database
- Time points:
 - PT baseline; last day of treatment; 4 weeks, 6,12, 24, and 36 months after treatment
 - MD baseline; 12 and 36 months after treatment
 - DP baseline; 12 and 36 months after treatment

Change in GCS at 36 months

*Chemo Use

Groups

NRG/NSABP B39-RTOG 0413: Comparing Cosmetic Outcome between Treatment Arms - PBI and WBI

$\mathbf{\Delta}^{\dagger} = [36-Month Sch$	ores - Baseline Scores]	Δ ⁺ in GCS by Patient	Δ ⁺ in GCS by Site MD	Δ [†] in GCS by DP Central MD Review
Chemo	Diff (µPBI- µWBI): 95%Cl: Bound:	n=307 0.06 (-0.14 to 0.25) -0.35 to 0.35 Equivalent	n=261 0.27 (0.02 to 0.53) -0.42 to 0.42 NOT Equivalent (PBI worse)	n=191 0.18 (-0.09 to 0.44) -0.37 to 0.37 NOT Equivalent (PBI worse)
	Effect Size:	0.06	0.26	0.19
Non-Chemo	Diff (µPBI- µWBI): 95%CI: Bound:	n=368 0.04 (-0.15 to 0.22) -0.35 to 0.35 Equivalent	n=343 0.16 (-0.01 to 0.33) -0.33 to 0.328 NOT Equivalent (PBI worse)	n=213 -0.20 (-0.42 to 0.01) -0.31 to 0.31 NOT Equivalent (WBI worse)
	Effect Size	0.04	0.19	-0.26
Combined*	Diff (µPBI- µWBI): 95%Cl: Bound:	n=675 0.04 (-0.09 to 0.17) -0.35 to 0.35 Equivalent	n=604 0.20 (0.05 to 0.35) -0.37 to 0.37 Equivalent	n=404 -0.024 (-0.19 to 0.14) -0.34 to 0.34 Equivalent
	Effect Size	0.045	0.22	-0.028

36-Month Global Cosmetic Score (GCS) by Treatment Arm All Patients

Adjusted Mean Change (Δ^+) in GCS by Patient at Each Time Point

Adjusted Mean Change (Δ⁺⁾ in GCS by Site MD at Each Time Point

Adjusted Mean Change (Δ⁺⁾ in GCS by MD Central Digital Photo Review at Each Time Point

Chemo Use Groups Combined Society for Radiation Oncology (ASTRO) ANNUAL MEETING

Patients' Satisfaction with Treatment and Cosmetic Outcome

At 36 Months

Change (Δ⁺⁾ in Patients' Satisfaction

Chemo	Diff (μPBI- μWBI): 95%CI: Bound: Effect Size:	n=327 0.013 (-0.18 to 0.21) -0.36 to 0.36 Equivalent 0.014
Non-Chemo	Diff (μPBI- μWBI): 95%CI: Bound: Effect Size:	n=386 0.045 (-0.13 to 0.22) -0.34 to 0.34 Equivalent 0.053
Combined	Diff (μPBI- μWBI): 95%CI: Bound: Effect Size:	n=713 0.03 (-0.10 to 0.16) -0.35 to 0.35 Equivalent 0.035

 $\Delta^{\dagger} = [36$ -Month Scores - Baseline Scores]

Conclusions

- Patient rated cosmetic outcome based on the GCS was equivalent for PBI and WBI.
- Accruing site MDs rated cosmetic outcome worse at 36 months for PBI. The change in cosmetic outcome over time was equivalent for PBI and WBI.
- Digital photo cosmetic outcome rated by MDs blinded to treatment arm and time point was equivalent for PBI and WBI.
- Patient Satisfaction was equivalent for PBI and WBI.

Expert Perspective

Wendy Woodward, MD

Chief of Clinical Breast Radiotherapy, The University of Texas MD Anderson Cancer Center

Longer Term Results from a Phase I/II Study of EP-guided Noninvasive Cardiac Radioablation for Treatment of Ventricular Tachycardia (ENCORE-VT)

Clifford Robinson, MD

Washington University School of Medicine in St. Louis

Disclosures for Dr. Robinson

- **Employer**: Washington University
- **Stock**: Radialogica
- **Research Grants**: Varian, Elekta, Merck
- **Consulting**: Varian, AstraZeneca, EMD Serono
- **Speaking**: Varian, ViewRay
- Results discussed here involve off-label use of linear accelerators outside of their current 510(k) intended use

Full author list:

C.G. Robinson,¹ P. Samson,¹ K.M.S. Moore,² G.D. Hugo,¹ N. Knutson,¹ S. Mutic,¹ S.M. Goddu,¹ D.H. Cooper,² M. Faddis,² A. Noheria,² T.W. Smith,² P.K. Woodard,³ R.J. Gropler,³ D.E. Hallahan,⁴ Y. Rudy,⁵ and P. Cuculich²

¹ Washington University School of Medicine, Department of Radiation Oncology, St. Louis, MO, ² Washington University School of Medicine, Department of Internal Medicine, Division of Cardiology, St. Louis, MO, ³ Washington University School of Medicine, Department of Radiology, St. Louis, MO, ⁴ Washington University in St. Louis, Department of Radiation Oncology, St. Louis, MO, ⁵ Washington University School of Medicine, Department of Biomedical Engineering, St. Louis, MO

Background

TOP TWO KILLERS

By AMERICAN HEART ASSOCIATION NEWS

The total number of Americans dying from heart disease rose in recent years following decades in decline. Cancer deaths have nearly tripled since 1950 and continue to climb.

VENTRICULAR TACHYCARDIA

Implantable Cardiac Defibrillator (ICD)

Medications (Amiodarone)

Catheter Ablation

Patient selection

Workup / Targeting

Imaging / Simulation

Segmentation

Delivery

ORIGINAL ARTICLE

Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia

Phillip S. Cuculich, M.D., Matthew R. Schill, M.D., Rojano Kashani, Ph.D., Sasa Mutic, Ph.D., Adam Lang, M.D., Daniel Cooper, M.D.,
Mitchell Faddis, M.D., Ph.D., Marye Gleva, M.D., Amit Noheria, M.B., B.S.,
Timothy W. Smith, M.D., D.Phil., Dennis Hallahan, M.D., Yoram Rudy, Ph.D., and Clifford G. Robinson, M.D. 5 patients w/refractory VT treated offlabel for clinical need in 2015

Single SBRT treatment, 25 Gy

Average treatment time 14 min

Phase I/II Trial – "ENCORE-VT"

Inclusion

- ≥3 VT episodes over 6 months
- Failed medication
- Failed (or too sick for) at least one catheter ablation

• Phase I - Safety

- Serious toxicity in first 90 days
- Phase II Efficacy
 - Any reduction in VT, 6 months before vs after

- **19 patients** 90% Male and Caucasian
- Significant cardiac impairment Average heart function (EF) less than half of normal
- **High burden of VT** 53% presented in "storm"
- Heavily medicated 58% on 2+ drugs and >300 mg of amiodarone
- Average treatment time 15 min as outpatient

Serious adverse events, <u>probably or</u> <u>definitely</u> related to SBRT

<90 days

- Grade 3
 - 1 pericarditis (80d)

>90 days

- <u>Grade 3</u>
 - **2 pericardial effusions** (2.2y and 2.4y)
- <u>Grade 4</u>
 - 1 gastropericardial fistula (2.4y)

Median follow-up, 23.5 mo (range, 0.6-36.1)

Phase II – Efficacy over time

Patients

Medications and QoL

Conclusion

We were able to **significantly reduce VT** using a workflow combining **noninvasive** imaging with a single noninvasive radiation therapy treatment

The **effect persisted for 2 years** in most patients

Serious toxicity was low, but may occur after 2 years. Long term follow-up is needed

ENCORE is currently **best suited for high-risk patients** who have failed conventional treatments for VT, and ideally on study

Expert Perspective

Joost Verhoeff, MD, PhD

Assistant Professor of Radiotherapy, University Medical Center Utrecht, Netherlands

Q & A

Use the "Question" tab in GoToWebinar to submit your questions.

More information and resources:

www.astro.org/ASTRO19press press@astro.org 703-286-1600