Radiotherapy is a type of cancer treatment where radiation is used to shrink tumors by destroying the cancer cells.

After activation, NBTXR3 is designed to trigger an immune response to help destroy the injected tumor as well as metastatic tumors and induce long-term immune memory against cancer.

While radiotherapy can be effective, the efficacy of treatment may be limited because the dose required to destroy the tumor would also cause too much damage to surrounding healthy tissues.

Clinical data have suggested that when NBTXR3 is activated, it increases the energy absorbed (up to 9 times) from radiotherapy and enhances the dose delivered, inducing significant tumor cell death without increasing the damage to surrounding healthy tissue.

NBTXR3 could potentially improve outcomes for millions of cancer patients worldwide who receive radiotherapy as part of their treatment.

NBTXR3 is a potential first-in-class radioenhancer that is injected once, directly into solid tumors and activated by radiotherapy.

In clinical trials, NBTXR3 has demonstrated tumor destruction and immune system activation.

NBTXR3 is currently being evaluated across solid tumor types and therapeutic combinations, to potentially change the practice of radiotherapy and immunotherapy for millions of cancer patients each year.

References:
2. World Health Organization (2014); **RADIATION THERAPY EQUIPMENT – A global strategic business report 08/06**

DISCOVER HOW NBTXR3 COULD EXPAND POSSIBILITIES FOR THE TREATMENT OF CANCER

EFFECTS OF NBTXR3

TUMOR CELL DESTRUCTION AND IMMUNE SYSTEM ACTIVATION

CLINICAL DATA SUGGEST THAT NBTXR3 IS ACTIVATED UP TO 9 TIMES MORE EFFICIENTLY THAN CONVENTIONAL RADIATION AND INDUCES THE IMMUNE SYSTEM TO ACTIVATE AGAINST CANCER CELL DEATH

NBTXR3 IS CURRENTLY BEING EVALUATED ACROSS SOLID TUMOR TYPES AND THERAPEUTIC COMBINATIONS, TO POTENTIALLY CHANGE THE PRACTICE OF RADIOTHERAPY AND IMMUNOTHERAPY FOR MILLIONS OF CANCER PATIENTS EACH YEAR.