Chapter 20 – Clinical Response of Normal Tissues – Lecture 2

11/21/2024

Outlines

- Cells and Tissues
- Early (Acute) and Late Effects
- Functional Subunits in Normal Tissues
- The Volume Effect in Radiotherapy: Tissue Architecture
- Radiation Pathology of Tissues
 - □ Casarett's Classification
 - □ Michalowski's H- and F-Type Populations
- Growth Factors
- Specific Tissues and Organs
- Grading of Late Effects

Mechanism

Organ by organ clinical observation

Hematopoietic System

H-type Tissue

Hematopoietic tissues are located primarily in the bone marrow Liver and spleen normally have no hematopoietic activity, but can become active in some circumstances

Pattern of depletion and recovery following 4-6 Gy of **TBI**

The stem cells of hematopoietic tissues are particularly radiosensitive with a $D_0 < 1$ Gy

The time at which the nadir occurs is a combination of the radiosensitivity of the stem cells and the lifetime of the mature functional cells

Palliative spleen irradiation for splenomegaly

Axial CT					
Coronal CT		S.C.			C. R.
Date	7/12/2017	18/12/2017	26/12/2017	4/1/2018	1/2/2018
Time (weeks)	0	1	2	3	8
					(4 after the end of the treatment)
CumDose (Gy)	0	5	12,5	20	27,5
SVol. (cm ³)	1866	1576	1085	1177	1036
Vol.Ratio (%)	100	84	58	63	56

Green line: initial spleen volume; Red line: current spleen volume; CumDose: cumulative dose; SVol.: spleen volume; Vol.Ratio: volume ratio [(current spleen volume/initial spleen volume)x100].

https://doi.org/10.3332/ecancer.2018.887

Partial Body Irradiation

IMRT to spare bone marrow

Irradiated Volume

The effects of partial body radiation on BM are the same as those following total body irradiation Fractionated dose > 30 Gy may cause permanent aplasia

Unirradiated Volume

The stem cells start dividing within hours, and **a compensatory hyperplasia** attempts to maintain a total production of blood elements

Hematopoiesis may extend to long bones, liver, spleen

Pools of stem cells falls progressively as differentiation is accelerated

Patients remain sensitive to new insult for months or even years following irradiation

Normal marrow

Hypocellular marrow

Regenerating marrow

Hematopoietic System

Effect of Chemotherapy

Normally, only 10% of hematopoietic stem cells are cycling

Following irradiation, a greater proportion of stem cells divide actively to regenerate blood elements

Many chemotherapy agents specifically target cycling cells

Marrow of patients irradiated to a larger volume are more sensitive to cytotoxic chemo drugs

RADIATION AND THE IMMUNE RESPONSE

	CELL TYPE	RADIOSEN- SITIVITY	RADIORESI- STANCE	OTHER
	Macrophage		Resistant up to 100Gy	Activated by radiation
	B-cells	80-100cGy		For all
L	Plasma cells		60-90Gy	lymphocytes,
	T-Helper	1-2Gy (unprimed)	>10Gy primed	are eliminated
	T-suppressor	1-5Gy (unprimed)	>10Gy (primed)	following
	T-cytotoxic	2-5Gy for subpopulation (minority)	>10Gy for majority subpopulation	cells remain.
	Granulocytes		Resistant to 50Gy	
	NK cells		Resistant to 20Gy	
	Hematopoietic precursors	<1Gy		
	PMNs	0.9Gy		Short lifespan of PMNs causes loss of PMNs from circulation after irradadiation.

Cytokines—Production is enhanced by radiation; induction is at the level of mRNA.

ТВІ	
Circulating lymphocytes – # rapidly fall	
Lymphoid tissue (nodes, spleen) – rapidly depleted of cells	

Lymphocytes are very radiosensitive largely because of apoptosis

B cells are more radiosensitive than T cells

Effect of Irradiation on Immune Function

Radiation exposure often result in increased susceptibility to infection

The effect depends on the volume irradiated, the number of surviving cells, as well as their capacity to migrate and become lodged in the microenvironment

A total body dose of 3.5-4.5 Gy inhibits the immune response against a new antigen (unprimed T cells are very radiosensitive)

Partial body irradiation has a limited effect on the immune response

Use of Radiation for Immune Ablation

Total lymphoid irradiation (TLI) is used to treat Hodgkin's disease, autoimmune disease, and to prepare patients for organ transplantation

TLI leads to long-lasting T cell lymphopenia

Radiation appears to promote tolerance, enhances the chances of allograft survival

Hematopoietic and Immune Systems

TABLE 20.2 A Compilation of Tissue and Organ Sensitivities						
	Injury	TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size		
Class I organs			LD _{50/60}			
Bone marrow	Aplasia, pancytopenia	2.5	4.5	Whole segment		
Lymph nodes and lymphatic	Atrophy, sclerosis s	50	70	Whole node		

Question 1

Which of the following is the correct temporal sequence for the appearance of the stated radiation effect on peripheral blood components?

A. lymphocytopenia, granulocytopenia, thrombocytopenia, anemia

- B. anemia, lymphocytopenia, granulocytopenia, thrombocytopenia
- C. granulocytopenia, thromobocytopenia, anemia, lymphocytopenia
- D. lymphocytopenia, anemia, granulocytopenia, thrombocytopenia
- E. lymphocytopenia, thrombocytopenia, granulocytopenia, anemia

Pattern of depletion and recovery following 4-6 Gy of **TBI**

The stem cells of hematopoietic tissues are particularly radiosensitive with a $D_0 < 1$ Gy

The time at which the nadir occurs is a combination of the radiosensitivity of the stem cells and the lifetime of the mature functional cells

Question 2

Which of the following statements is TRUE concerning radiation effects on the bone marrow?

- A. In general, B cells are more radiosensitive than T cells.
- B. Following total body irradiation, thrombocytopenia is typically observed before neutropenia.
- C. Lymphocyte counts do not drop until several weeks after totalbody irradiation.
- D. Individuals suffering from the bone marrow syndrome usually die of severe anemia.

RADIATION AND THE IMMUNE RESPONSE

	CELL TYPE	RADIOSEN- SITIVITY	RADIORESI- STANCE	OTHER
	Macrophage		Resistant up to 100Gy	Activated by radiation
	B-cells	80-100cGy		For all
L	Plasma cells		60-90Gy	lymphocytes,
	T-Helper	1-2Gy (unprimed)	>10Gy primed	are eliminated
	T-suppressor	1-5Gy (unprimed)	>10Gy (primed)	following
	T-cytotoxic	2-5Gy for subpopulation (minority)	>10Gy for majority subpopulation	cells remain.
	Granulocytes		Resistant to 50Gy	
	NK cells		Resistant to 20Gy	
	Hematopoietic precursors	<1Gy		
	PMNs	0.9Gy		Short lifespan of PMNs causes loss of PMNs from circulation after irradadiation.

Cytokines—Production is enhanced by radiation; induction is at the level of mRNA.

ТВІ	
Circulating lymphocytes – # rapidly fall	
Lymphoid tissue (nodes, spleen) – rapidly depleted of cells	

Lymphocytes are very radiosensitive largely because of apoptosis

B cells are more radiosensitive than T cells

Question 3

Which of the following types of blood cells is most radioresistant?

- A. Granuocyte/monocyte colony forming cells (GM-CFC)
- B. Spleen-colony forming units (CFU-S)
- C. Macrophages
- D. Unprimed T-helper cells
- E. B-cells

Question 4

Which of the following statements is TRUE concerning radiation effects on the bone marrow?

- A.) The absolute lymphocyte count rate of decrease over 2 days may estimate the severity of total body irradiation induced injury
- B. Following total body irradiation, thrombocytopenia is typically observed before neutropenia
- C. Lymphocyte counts do not decrease until several weeks after total body irradiation
- D. Individuals suffering from bone marrow syndrome usually die of severe anenmia
- E. There is no late effect pathology associated with bone marrow irradiation

Take My Money

Having all that money would be stressful!

I would probably donate most because I know that many lottery winners end up with less money than they had originally.

B.

C.

D.

The Digestive Tract

The digestive tract is made up of several organs like the **oral cavity**, **pharynx**, **esophagus**, **stomach**, **small intestine**, **large intestine**, **rectum** and the **anus**

H-Type Tissue

The cellular organization of the oral mucosa is similar to that of the skin

The lifespan of the differentiated cells is much shorter than in epidermis \rightarrow more rapid reaction to radiation

Mucositis is a major dose limiting factor in the treatment of head & neck cancer

Confluent mucositis

Desquamation of the oral cavity occurs by about day 12

Desquamation occurs first in the soft palate, followed by the hypopharynx, vallecula, floor of mouth, cheeks, epiglottis, base of tongue, vocal cords, and dorsum of tongue

The pathophysiology of radiation-induced oral mucositis (RIOM) is not fully understood

Recent studies proposed that the pathogenesis of RIOM involves release of various **pro-inflammatory cytokines** from epithelial, vascular, and connective tissue cells at the site of tissue injury

Secondary infection with bacteria or yeast may also occur

Salivary Gland

The serous acinar cells of the salivary glands die by apoptosis

Xerostomia (dry mouth) appears during and after radiation and is the main clinical effect that can interfere with nutrition, deteriorate oral hygiene, and predispose to dental problems

Taste Buds

Impairment of taste acuity occurs during the 3rd week

Sequence of Events During Treatment of H&N Cancer

Week 1

Asymptomatic to slight focal hyperemia and edema caused by dilatation of capillaries in sensitive patients

Week 2

Increasing pain and loss of desire to eat Sense of taste is altered Erythema and edema increase Early patchy desquamative mucositis occurs

Week 3

Mucositis and swelling with depletion of gland secretions leading to difficulty in swallowing Mucositis plaques are confluent

Week 4

Confluent mucositis sloughs, resulting in denuded lamina propria Mucosa becomes covered by fibrin and neutrophils

Week 5

Maximum radiation damage apparent Extreme sensitivity to touch, temperature, and grainy food Recovery of epithelial layer may begin during therapy

Late Effects

Tongue consists of muscle bundles which undergo mild progressive **fibrosis** and **fiber atrophy** after irradiation Picture also showing severe xerostomia

Osteoradionecrosis (ORN)

ORN can be spontaneous, but it most commonly results from tissue injury. Even apparently innocuous forms of trauma such as denture-related injury, ulcers, or tooth extraction can overwhelm the reparative capacity of the radiation-injured bone. **Pentoxifylline** may be helpful for the treatment of radiation fibrosis and osteoradionecrosis.

		Injury	7	$\Gamma \mathbf{D}_{5/5}, \mathbf{G}\mathbf{y}$	$TD_{50/5}, Gy$	Field Size
Oral an	cavity d pharynx	Ulceration, mucositis		60	75	50 cm^2
Saliva	ary glands	Xerostomia		32	46	1/3 or 1/2
			QUANTEC			
Organ	Volur segmer	Irradiation type ne (partial organ unless nted otherwise stated) [†]	Endpoint	Dose (Gy) dose/volu paramete), or me rs [†] Rate (%)	Notes on dose/volume parameters
Pharynx	Pharyngeal constrictors	Whole organ	Symptomatic dysphagia ar aspiration	nd Mean dose <	50 <20	Based on Section B4 in paper
Parotid	Bilateral whole parotid glands	3D-CRT	Long term parotid salivary function reduced to <25% of pre-RT level	Mean dose <2 of	25 <20	For combined parotid glands [¶]
-	Unilateral whole parotid gland	3D-CRT	Long term parotid salivary function reduced to <25% of pre-RT level	Mean dose <2 of	20 <20	For single parotid gland. At least one parotid gland spared <20 Gy [¶]
	Bilateral whole parotid glands	3D-CRT	Long term parotid salivary function reduced to <25% pre-RT level	Mean dose <	39 <50	For combined parotid glands (pe Fig. 3 in paper) ¶

to

Question 1

Which of the following statements is TRUE concerning irradiation of the salivary glands?

- A. Serous acinar cells die only by mitotic catastrophe after irradiation.
 B. The serous acinar cells of the parotid and submaxillary glands are considered the target cells for radiation-induced salivary gland damage.
- C. Salivary dysfunction is a late radiation effect rarely observed earlier than six months following treatment.
- D. Mucous cells are more radiosensitive than serous cells.
- E. Dose fractionation results in significant sparing of serous cells.

Salivary Gland

The serous acinar cells of the salivary glands die by apoptosis

Xerostomia (dry mouth) appears during and after radiation and is the main clinical effect that can interfere with nutrition, deteriorate oral hygiene, and predispose to dental problems

Taste Buds

Impairment of taste acuity occurs during the 3rd week

Medical residents only

Question 2

The tolerance dose for xerostomia resulting from treatment of a head and neck tumor with 3 Gy fractions compared to 2 Gy fractions would be expected to:

- A. Increase substantially
- B. Increase slightly
- C. Decrease substantially
- D. Remain about the same
- E. Either increase or decrease depending upon the particular patient

Serous cells die by apoptosis, hence tolerance not influenced by fraction size

Question 3

One type of radiation-induced bone injury is mandibular radionecrosis (MORN). Which of the following is NOT a risk factor for MORN?

A. Presence of teeth

- B. Pre-existing dental disease
- C. Use of fluorinated water
- D. Tooth extraction after radiotherapy
- E. Use of large doses per fraction during treatment

Medical residents only

Question 4

The oral mucosa and skin present with many similar pathological features during their progression toward radiation toxicity. Which of the following statements regarding the overlapping pathologies observed in these tissues is FALSE?

- A. Oral mucositis is a result of the death and consequent desquamation of the epithelial layers, and is therefore an analogous event to the radiodermatitis (dry/moist desquamation) seen as an early response in irradiated skin
- B. Erythema secondary to vasodilation is observed in skin following doses greater than about 2 Gy, similar to the case for mucositis
- C. Radiation effects in both oral mucosa and skin are dependent on total dose, fraction size, and volume irradiated
- D. Possible late effects in both skin and oral mucosa include ulceration and fibrosis
- E. The development of dental caries following oral radiotherapy is similar mechanistically to the infections that accompany radiation-induced dermal ulcers; both result from ischemic necrosis due to the loss of small blood vessels (dental caries are results of xerostomia rather than infection)

Question 5

Medical residents only

A drug used to treat fibrosis and osteoradionecrosis is:

- A. Amifostine
- B. Tirapazamine
- C. Nicotinamide
 - Pentoxifylline
- E. Misonidazole

- Pentoxifylline is a commonly used medication for muscle pain associated with peripheral artery disease. It improves peripheral blood flow, flexibility of red blood cell membranes, microcirculation, and tissue oxygenation and reduces viscosity of blood.
- Tocopherol (vitamin E) impairs tissue fibrosis and is a potent oxygen radical scavenger that may reduce damage caused by free radicals impacting necrosis.

The Digestive Tract – Esophagus

Acute

Rapid proliferating squamous cell epithelium

Esophagus

Esophagitis appear at about 10 - 12 days Symptoms include <u>dysphagia</u>, <u>odynophagia (pain with swallowing)</u> or <u>acid</u> <u>reflux</u>

Can be potentiated by hyperfractionation; concurrent chemotherapy

Late

Late effects are related to **muscle layer**; they include necrosis and a thickening of the epithelium Symptoms include difficulty on swallowing and ulceration after high doses

ll epithelium		Injury			TD _{50/5} , Gy	Field Size	
	Esophagus	Esophagitis, ulceration		55 60	50 70	Whole 1/3	
Whole organ	3D-CRT	Grade \geq 3 acute esophagitis	Mean dose <34	5–20	Based on RTOG and	d several studies	
Whole organ	3D-CRT	Grade \geq 2 acute esophagitis	V35 <50%	<30	A variety of alternate threshold doses		
Whole organ	3D-CRT	CRTGrade ≥ 2 acute esophagitisV50 <40%CRTGrade ≥ 2 acute esophagitisV70 <20%		<30	A prease to be a dose	loaled.	
Whole organ	3D-CRT			<30	Appears to be a dose	volume response	
Acute radiation esophagitis presents as dysphagia or a substernal burning sensation as early as 2 weeks after the start of conventionally fractionated radiation therapy. Medical management most often involves:

- A. Angiotensin converting enzyme inhibitors
- B. Gene therapy with manganese superoxide dismutase
- C. Non-steroidal anti-inflammatory drugs
- D. Pentoxifylline
- E. Vitamin E

The Digestive Tract – Stomach

Precursor cells of gastric glands give rise to mucin-secreting surface columnar cells with short lifespan (~ 3 or 4 days) and to acid-secreting parietal and pepsinogensecreting chief cells that have long lifespan (hundreds of days) Early

Irradiation causes nausea, vomiting **Delayed gastric emptying** and **epithelial denudement** are the two main early radiation effects

Acute ulceration may occur shortly after the completion of treatment (> 40 Gy) but rarely leads to perforation

Late

Dyspepsia (6 months to 4 yrs) and **gastritis** (1 to 12 months) **Late ulceration and submucosal fibrosis** leading to antral fibrosis

	Injury	TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size
Stomach	Perforation, ulcer, hemorrhage	50	65	Whole
	C C	60	70	1/3

The Digestive Tract – Small and Large Intestine

Acute mucositis due to epithelial denudation Symptoms manifest as diarrhea Regenerative response appears rapidly Acute symptoms are seldom dose-limiting – interruption of treatment for a few days usually alleviate symptoms

Late

Fibrosis and **ischemia** are typical late effects Late effects involve **all tissue layers** and are caused by atrophy of the mucosa (due to vascular injury) Subsequent breakdown results from mechanical irritation and bacterial infection

Overgrowth of the fibromuscular tissue with **stenosis** and serosal breakdown and **adhesion** formation may also occur

The Digestive Tract – Small and Large Intestine

Small bowel

Friability and oozing of blood from atrophicappearing mucosa due to radiation

Large bowel

Characteristic mucosal changes observed in radiation proctitis with multiple telangiectasias

Sucralfate enemas constitute first-line treatment of hemorrhagic radiation proctitis. **Laser photocoagulation**, **argon beam coagulation**, and **local formalin therapy** are also efficacious and may be considered as second-line therapy in such patients.

The Digestive Tract – Small and Large Intestine

This slide illustrates disorderly crypts, fibrosis of lamina propria, and vascular dilatation, all of which are characteristic of colonic injury due to radiation

Small bowel

Individual small bowel loops

		Injury		TD_5	/5, Gy	TD _{50/5} , Gy	Field Size
	Intestine	Obstruction,	perforation, fistula	4 5	0 0	55 65	Whole 1/3 or 1/2
	Rectum	Ulcer, stenos	is, fistula	60		80	No volume effect
3D-CRT	Grade \geq 3 acute toxicity [§] V15		V15 <120 cc	<10	Volume the indiv entire p	e based on segmentat vidual loops of bowe otential peritoneal sp	ion of l, not the pace
3D-CRT	Grade ≥	3 acute toxicity [§]	V45 <195 cc	<10 Volume based on the entire potential space within the peritoneal cavity		potential cavity	
3D-CRT	Grade ≥	2 late rectal toxicity,	V50 <50%	<15	Prostate	e cancer treatment	

	Entire potential space within peritoneal cavity	3D-CRT	Grade \geq 3 acute toxicity [§]	V45 <195 cc	<10	Volume based on the entire potenti space within the peritoneal cavity
			·	^	· · ·	· •
Rectum	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity,	V50 <50%	<15	Prostate cancer treatment
			Grade ≥ 3 late rectal toxicity		<10	
	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity,	V60 <35%	<15	
			Grade ≥ 3 late rectal toxicity		<10	
	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity,	V65 <25%	<15	
			Grade ≥ 3 late rectal toxicity		<10	
	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity,	V70 <20%	<15	
			Grade ≥ 3 late rectal toxicity		<10	
	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity,	V75 <15%	<15	
	-		Grade \geq 3 late rectal toxicity		<10	

Therapeutic Opportunities with Pharmacologic Mitigators

Key Features

- Flattening of villi
- Relative depletion of stem cells
- Increase in goblet cells
- Fibrosis
- Microvascular rarefaction
- Chronic inflammation

- 1. Directly protect against or mitigate the O_2 free radical injury
- 2. Target downstream tissue responses after radiation exposure

Huh 2020 – Clinical Cancer Research; 26: 3079-90

Which of the following effects is typically observed within a week following irradiation of the small intestine?

- A. hypertrophic villi
- B. lymphocyte infiltration
- C atrophic villi
- D. mucosal atrophy
- E. bowel stenosis

Think about this picture:

Concerning irradiation of the small and large intestine, which of the following statements is FALSE?

- A. Chronic radiation injury is attributable primarily to fibrosis and vascular insufficiency (chronic ischemia)
- B. The most common portions of the intestinal tract that display radiation damage include the cecum, terminal ileum, rectum, and distal sigmoid
- C. Acute radiation injury is most prominent in the mucosa, whereas late effects tend to manifest themselves in the submucosa

- Compared to hierachical tissues, the gastrointestinal mucosal is a slowly renewing system
- E. Killing of the stem cells in the gut crypts and the resulting failure to replace mature cells causes the gastrointestinal syndrome following acute radiation exposure

Even if you are not sure of all the statements, focus on what you do know

Which of the following statements concerning complications arising from pelvic irradiation is FALSE?

A. Diarrhea is the most common manifestation of radiation injury to the bowel

- .) Diarrhea usually does not appear until at least 6 months following the completion of radiotherapy
- C. Late bowel reactions include mucosal atrophy, stenosis, ulceration, obstruction, adhesions and perforation.
- D. Bowel stenosis can develop in the absence of severe mucosal atrophy or ulceration
- E. Adhesions following irradiation contribute to late bowel injury and usually develop 2-7 months after irradiation

Diarrhea is an early response that occurs during the course of radiation therapy

What portion of the gastrointestinal tract generally exhibits the greatest **<u>acute</u>** radiation-induced injury for a given dose?

- A. Stomach
- B. Oropharynx
- C. Small intestine
- D. Large intestine
- E. Esophagus

Think about GI syndrome in the context of total body irradiation

Entrepreneur & Philanthropy

With that much money, I would try to open a radiation center in a low resource area of the world and work in it. After opening and running the clinic, I would retire early and focus on raising a good family

Subacute

Acute (subacute) pneumonitis

Latency – 2- 6 months Symptoms – cough, dyspnea, may be asymptomatic Imaging – opacity on chest x-ray

Structurally defined FSU in parallel Late-responding tissue with α/β ratio of 3 Gy Tolerance depends on dose, volume, and fraction size

Radiation target cells – pulmonary endothelial cells & type II pneumocytes

Late

Pulmonary fibrosis

Latency – more than a year Symptoms – difficulty with breathing TGF- β plays an important role in lung fibrosis

Lungs

Radiation pneumonitis

Regions of pneumonitis can extend outside of the treatment field, known as <u>abscopal</u> effects.

Chemo agents such as bleomycin, cyclophosphamide, mustines can also cause lung damage \rightarrow concurrent use of radiation and these drugs will reduce lung tolerance

Cytokines and Radiation-Induced Lung Injuries Acute Phase of Radiation Pneumonitis

Classical paradigm of the target cell kill hypothesis has shifted to a theory of **orchestrated response**, starting with <u>ROS generation</u>, followed by various activation of <u>signal transduction pathways</u> inducing processes leading to replacement of damaged cells, influx of inflammatory cells from peripheral blood and **cytokine production**, and development of radiation complications.

Lungs

	Injury	TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size	E
Lung	Acute and chronic	17.5 45	24.5 65	Whole	a
	pneumonitis	45	65	1/3	

Because of the parallel arrangement of FSU, small volume can tolerate high dose

Dose Volume Histogram

In practice, many radiation oncologists are using the V20, V30 (i.e., the volume of lung receiving 20 Gy, 30 Gy) or mean lung dose as a defining limiting factor

Lung	Whole organ	3D-CRT	Symptomatic pneumonitis	$V20 \le 30\%$	<20	For combined lung. Gradual dose response
	Whole organ Whole organ Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT 3D-CRT 3D-CRT 3D-CRT	Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis	Mean dose = 7 Mean dose = 13 Mean dose = 20 Mean dose = 24 Mean dose = 27	5 10 20 30 40	Excludes purposeful whole lung irradiation

Lungs – Case Study

- 4240 cGy / 16 fx + 1000 cGy / 4 fx boost
- Completed July, 2013

Oct 2013 (3 mo s/p XRT)

- Dry cough, fever
 100.8° F, chest tightness
- Sx not improved with Abx

Her symptoms resolved with prolonged steroids

Which of the following statements regarding the development of radiation-induced lung damage is TRUE?

- A. The volume of lung irradiated has relatively little effect on the tolerance dose. Parallel FSU, strong volume effect.
- B. Radiation-induced pneumonitis is delineated by the treatment

field. Abscopal effect. See slide.

- C. The majority of patients who develop radiation pneumonitis go on to develop pulmonary fibrosis.
- D. The TD_{5/5} for whole lung irradiation with a <u>single dose</u> is approximately 17.5 Gy. <u>See Emami Table</u>
- E. Fractionation has little or no effect on lung tolerance.

The tolerance dose 5% in 5 yrs (TD5/5) and 50% in 5 yrs (TD50/5) for lung pneumonitis is best represented by which of the following doses?

- A. 8Gy and 15Gy respectively
- B. 17Gy and 24Gy respectively
- C. 22Gy and 30Gy respectively
- D. 32Gy and 39Gy respectively

	Injury	TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size
Lung	Acute and chronic pneumonitis	17.5 45	24.5 65	Whole 1/3

Fractionated dose

With respect to radiation-induced toxicity in the lung, which of the following statements is FALSE?

A. The likelihood of the injury is dependent on the volume irradiated

- B. Radiation pneumonitis is a characteristic late effect of lung radiotherapy that occurs 6-12 months after treatment completion. Latency = 2-6 mo
- C. The dose response curve for lung injury following whole lung irradiation is steep regardless of the dose per fraction used
- D. Lung toxicity is enhanced when radiation is combined with carboplatinpaclitaxel.
- E. Several cell types are involved in the development of pulmonary late effects, including the type II pneumocyte, the alveolar macrophage and vascular endothelial cells

See slide

Subacute

Acute (subacute) pneumonitis

Latency – 2- 6 months Symptoms – cough, dyspnea, may be asymptomatic Imaging – opacity on chest x-ray

Structurally defined FSU in parallel Late-responding tissue with α/β ratio of 3 Gy Tolerance depends on dose, volume, and fraction size

Radiation target cells – pulmonary endothelial cells & type II pneumocytes

Late

Pulmonary fibrosis

Latency – more than a year Symptoms – difficulty with breathing TGF- β plays an important role in lung fibrosis

Kidneys

Kidney is a late-responding tissue

Renal irradiation can lead to the development of **radiation nephropathy**, which is characterized by <u>proteinuria</u>, <u>anemia</u>, <u>hypertension</u> and a <u>chronic</u>, <u>progressive decrease in renal function</u>

The morphologic changes include glomerulosclerosis, tubulointerstitial fibrosis

Recent data from both the laboratory and clinic suggest that this late effect can be modulated by drugs that drugs that block the **renin-angiotensin system**

Kidneys

FSU = nephron (each containing \sim 1,000 stem cells)

Tolerance dose – because of the small size of each FSU, kidney has a relatively low tolerance dose

Volume effect – because of the parallel FSU arrangement, part of the kidney may tolerate much higher doses

		Injur	у	TD _{5/5}	, Gy	TD _{50/5} , Gy	Field	Size
	Kidney	Acute nep	and chronic hrosclerosis	23 50		28 45	Whole 1/3 or	e 1/2
Kidney	Bilateral who	le kidney [‡]	Bilateral whole organ or 3D-CRT	Clinically relevant renal dysfunction	Me	ean dose <15–18	<5	
	Bilateral who	le kidney [‡]	Bilateral whole organ	Clinically relevant renal dysfunction	Me	ean dose <28	<50	
	Bilateral who	le kidney [‡]	3D-CRT	Clinically relevant renal dysfuntction	V1 V2 V2 V2	12 <55% 20 <32% 23 <30% 28 <20%	<5	For combir

Which of the following statements is TRUE concerning the response of the kidney to radiation? The kidney:

- A. is considered a relatively radiosensitive organ because of the marked sensitivity of cells that comprise the nephron
- B. exhibits little sparing with increasing dose fractionation
- C. has a relatively low tolerance dose because of the limited number of cells that comprise each functional subunit
- D. displays substantial re-treatment tolerance
- E. manifests symptoms of radiation nephropathy generally within 3 months following the completion of radiotherapy

Medical residents only

Question 2

Renal irradiation can lead to the development of radiation nephropathy, which is characterized by proteinuria, anemia, hypertension and a chronic, progressive decrease in renal function. The decline in kidney function characteristic of radiation nephropathy can be:

- A. Treated with anti-hypertensive agents such as beta blockers
- B. Prevented using anti-inflammatory agents
- C. Reversed using calcium channel blockers
- D. Mitigated using drugs that block the renin-angiotensin system
- E. Accelerated at lower radiation doses

Radiation-Induced Liver Disease (RILD)

(Historically called "radiation hepatitis")

Usually develops 1-2 months after RT (range 2 weeks - 8 months)

Clinical syndrome – fatigue, ascites, anicteric hepatomegaly, elevated liver function tests (esp. alkaline phosphatase)

Pathologic changes – veno-occlusive disease (VOD), marked central venous congestion, sparing of large veins, entrapment of erythrocytes, atrophy of adjacent hepatocytes

Pathogenesis – since the principal observed injury in the liver is vascular in nature, the radiobiological target has been hypothesized as the **endothelial cell**

RILD pathogenesis includes complex and multicellular responses associated with vascular changes, increased collagen synthesis and sequential activation of key growth factors and cytokines, such as TNF- α , TGF- β and hedgehog (Hh), which are important regulators in repair responses to liver damage.

Kim & Jung 2017 – Experimental & Molecular Medicine 49: e359

Liver hilum (where bile duct, hepatic artery, and portal veins are centrally located) functions as a serial FSU tissue

 Damage to the bile duct will lead to dysfunctionality

Tolerance – in terms of radiosensitivity, liver ranks immediately below the kidney and lung

Volume effect – FSU arranged in parallel, therefore much larger doses are tolerated if only part of the organ is exposed; on the other hand, fatal hepatitis may result from a fractionated protocol of only 35 Gy if the whole liver irradiated (life span of hepatocyte is \sim 1 year)

	Injury	TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size
Liver	Acute and chronic hepatitis	30 50	40 55	Whole 1/3

Organ	Volume segmented	Irradiation type (partial organ unless otherwise stated) [†]	Endpoint	Dose (Gy), or dose/volume parameters [†]	Rate (%)	Notes on dose/volume parameters
Liver	Whole liver – GTV	3D-CRT or Whole organ	Classic RILD ^{$\dagger\dagger$}	Mean dose <30-32	<5	Excluding patients with pre-existing liver disease or hepatocellular carcinoma, as tolerance doses are lower in these patients
	Whole liver – GTV	3D-CRT	Classic RILD	Mean dose <42	<50	
	Whole liver – GTV	3D-CRT or Whole organ	Classic RILD	Mean dose <28	<5	In patients with Child-Pugh A preexisting liver disease or hepatocellular carcinoma, excluding hepatitis B reactivation
	Whole liver – GTV	3D-CRT	Classic RILD	Mean dose <36	<50	as an endpoint
	Whole liver –GTV	SBRT (hypofraction)	Classic RILD	Mean dose <13 <18	<5 <5	3 fractions, for primary liver cancer 6 fractions, for primary liver cancer
	Whole liver – GTV	SBRT (hypofraction)	Classic RILD	Mean dose <15 <20	<5 <5	3 fractions, for liver metastases 6 fractions, for liver metastases
	>700 cc of normal liver	SBRT (hypofraction)	Classic RILD	D _{max} <15	<5	Critical volume based, in 3–5 fractions

Liver – Case Study

R breast cancer, s/p lumpectomy and RT

RILD, previously termed radiation hepatitis, manifests 4 to 8 weeks after radiation exposure.²⁻⁵ Significant RILD develops in 6% to 66% of patients exposed to an excess of 30 to 35 Gy of radiation, depending on irradiated liver volume and hepatic functional reserve.3,5 Patients may present with a triad of ascites, hepatomegaly, and elevated liver enzymes.² The majority of patients recover completely in 3 to 5 months, while a minority progress towards a chronic stage, with worsening liver fibrosis and failure, only rarely developing fulminant hepatic failure.^{3,5} The term "radiation hepatitis"

1 mo after RT, presented with right upper abdominal pain, nausea, vomiting MRI showed masslike infiltrative process

developing fulminant hepatic failure."" The term "radiation hepatitis" is a misnomer, since pathologic evaluation fails to reveal inflammation, instead showing nonspecific veno-occlusive disease.3-5 Radiation-induced endothelial damage exposes the subendothelial basement membrane, leading to platelet activation and aggregation, and stimulation of dormant hepatic stellate cells. Fibrin thrombus causes venous occlusion, panlobular congestion, diffuse hemorrhagic and necrotic foci, and distention of hepatic sinusoids.3-5 Prolonged obstruction and activation of hepatic stellate cells results in hepatocyte loss and fibrosis mediated by transforming growth factor-B1 release.3-5 Radiologically, RILD presents with a "straight-border" sign, which is defined as any hepatic attenuation difference bordered by straight lines.1 Fatty infiltration, fibrosis, and vascular abnormalities can all present similarly.¹ RILD presents as demarcated areas of hypoor hyperattenuation in a nonanatomic distribution, contrasting with vascular lesions.1 Our patient developed RILD following hepatic radiation exposure during irradiation of right chest wall/axilla 6 weeks earlier. Subsequent tests after 4 months and later imaging showed complete normalization of liver enzymes and hepatic appearance (Fig 1B). As of May 2008, our patient was free of recurrent disease.

Case Report

Which of the following statements is true regarding radiation-induced liver disease (RILD)?

- A. Hepatocytes are the principal radiobiological target. Endothelial cells
- B. Liver is a flexible type tissue, so volume does not affect tolerance. Parallel organ; volume effect
- C. High plasma levels of TGF- β predict for a decreased probability of developing RILD.
- **D**. Fraction size is not a factor in tolerance to RILD.
- E. In the bone marrow transplant setting, symptoms of RILD are observable within 3 months after treatment completion.

With respect to the morphologic changes associated with radiation-induced liver disease, notably veno-occlusive disease (VOD), all of the following may be observed, EXCEPT:

- A. Heavy congestion in the sinusoids
- B. Atrophy of the liver plates
- C. Fiber-filled lumen of the sublobular veins
- D. Apoptotic Kupffer cells filled with hematoxylin
- E. Subacute morphological changes

Medical physics students are not required to know the details of VOD

Concerning radiation induced liver disease (RILD), all of the following statements are true, EXCEPT:

- A. RILD is a clinical syndrome of ascites, elevated liver enzymes, and hepatomegaly in the absence of jaundice
- B. RILD is rarely observed earlier than 6 months following completion of radiotherapy 1-2 mo after RT
- C. Suprahepatic vein obstruction and veno-occlusive liver disease are seen in RILD
- D. Pathologic changes in RILD include marked venous congestion in the central portion of each lobule-with sparing of the larger veins and atrophy of hepatocytes adjacent to the congested veins
- E. Killing of vascular endothelial cells appears to be of greater importance than hepatocyte lethality in the pathologic changes observed in RILD See slide

Focus on what's discussed in the slides

Bladder Epithelium

	Injury	TD _{5/5} , G y	TD _{50/5} , Gy	Field Size
Bladder	Contracture	65 80	80 85	2/3 1/3

The bladder epithelium consists of a basal layer formed of small diploid cells, covered by several layers of larger transitional cells and at the surface by a very large polyploid cells

Cell renewal rate is low – the superficial cells have a lifespan of several months

Urinary frequency is due to loss of the surface cells and irritation of the deeper cellular layers by urine, leading to stimulation of cellular proliferation

Subsequent late effects are related to fibrosis and reduction in bladder capacity

Bladder – QUANTEC

Organ	Volume segmented	Irradiation type (partial organ unless otherwise stated) [†]	Endpoint	Dose (Gy), or dose/volume parameters [†]	Rate (%)	Notes on dose/volume parameters
Bladder	Whole organ	3D-CRT	Grade \geq 3 late RTOG	Dmax <65	<6	Bladder cancer treatment. Variations in bladder size/shape/ location during RT hamper ability to generate accurate data
	Whole organ	3D-CRT	Grade ≥3 late RTOG	$V65 \le 50 \% V70 \le 35 \% V75 \le 25 \% V80 \le 15 \%$		Prostate cancer treatment Based on current RTOG 0415 recommendation

- Acute inflammatory phase
- Latent symptom free phase
- Late chronic inflammatory phase

Zwaans 2016 - Rev Urol. 2016;18(2):57-65
Central and Peripheral Nervous System

The nervous system is less sensitive to radiation than other late-responding organs and tissues such as the kidney or lung However, we try not to push to the $TD_{5/5}$ and we use wide margins of safety in dose because damage to these tissues results in severe consequence, including paralysis

Brain

Target Cells

Neurons

Typical neurons

Neurons receive stimulation from their branches, known as dendrites. They communicate with other neurons, creating a network with millions of other by firing a nerve impulse along an axon.

Non-proliferating end cells

Various types of glial cells

Glia carry nutrients, speed repair, provide myelin for axons, support the blood-brain barrier, and may form their own communication network. They are also involved in neurogenesis.

Slow turnover Only 1% are stem cells

ules de pinocytos

Slow turnover Can proliferate rapidly after injury

Glial cells

Vascular endothelial cells

prolongement pédiculé d'un astrocyte

Mechanism of Radiation-Induced Brain Injury

The cellular response to radiation injury in the brain involves multiple cell types including astrocytes, microglia, oligodendrocytes, endothelial cells, and neurons that initiate and respond to inflammatory cascades and contribute to progressive neurological damage.

Brain

Acute

The acute lesions include an **increase in blood brain barrier permeability and edema**, due in part to a rapid burst of apoptotic cell death, which is seen in a variety of normal brain cells, including endothelial cells.

First 6 months (Early-Delayed)

Somnolence syndrome – due to transient demyelination **Leukoencephalopathy** – destruction of the myelin sheaths

Pathology usually involves white matter

Brain

Beyond 6 months to a year

Brain radionecrosis

Pathology – primarily limited to <u>white matter</u>, additionally <u>gray matter</u> also show changes along with <u>vascular lesions</u> such as telangiectasia and focal hemorrhages

Symptoms – cognitive defects, seizure, difficulty with speech, balance problems

Spinal Cord

Lhermitte's sign is an electrical sensation that runs down the back and into the limbs, and is produced by bending the neck forward.

Radiation-induced changes in the spinal cord are similar to those seen in the brain w.r.t. latency, tolerance dose, and histology

Early-Delayed

Lhermittes sign

May occur at doses as low as 35 Gy Usually reversible and does not predict permanent myelopathy Pathology – transient demyelination from inhibition of oligodendrocyte proliferation

6-18 months

Demyelination and necrosis of the white matter

1-2 years Vasculopathy

Spinal Cord

Effect of fractionation

Spinal cord is a late-responding tissue with a small α/β ratio, hence tolerance depends on dose per fraction

Lower dose per fraction reduce the risk of late effects

Sublethal Damage Repair

There is evidence of two components of repair – one with a $t_{1/2}$ less than 1 hour and one with $t_{1/2}$ close to 4 hours

If 2 fractions are given per day, the time b/w fractions must be at least 6 hours

Spinal Cord

Volume Effect

Spinal cord is the clearest example of a tissue in which FSUs are arranged **in series**

The probability of myelopathy depends on the length irradiated

Chemo Effect

Chemo agents such as methotrexate, cisplatin, vinblastine, AraC are neurotoxic

Concurrent or sequential use of chemo reduces the spinal cord (and brain) tolerance

Peripheral Nerves

Radiation injury of peripheral nerves probably is more common than effects on spinal cord

It is thought to be more radioresistant than spinal cord or brain, but there are few data to support this

 $TD_{5/5}$ is 60 Gy/2 Gy fx, and probability of injury rises steeply with increasing dose

CNS and **PNS**

	Injury	TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size
Brain	Infarction, necrosis	45 60	60 75	Whole 1/3
Spinal cord	Infarction, necrosis	47 50	70	20 cm 5 or 10 cm
Peripheral nerv	ves Neuritis	60	100	

Organ	Volume segmented	Irradiation type (partial organ unless otherwise stated) [†]	Endpoint	Dose (Gy), or dose/volume parameters [†]	Rate (%)	Notes on dose/volume parameters
Brain	Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT	Symptomatic necrosis Symptomatic necrosis Symptomatic necrosis	Dmax <60 Dmax = 72 Dmax = 90	<3 5 10	Data at 72 and 90 Gy, extrapolated from BED models
	Whole organ	SRS (single fraction)	Symptomatic necrosis	V12 <5–10 cc	<20	Rapid rise when V12 > 5–10 cc
Brain stem	Whole organ	Whole organ	Permanent cranial	Dmax <54	<5	
	Whole organ	3D-CRT	Permanent cranial neuropathy or necrosis	D1–10 cc \leq 59	<5	
	Whole organ	3D-CRT	Permanent cranial neuropathy or necrosis	Dmax <64	<5	Point dose <<1 cc
_	Whole organ	SRS (single fraction)	Permanent cranial neuropathy or necrosis	Dmax <12.5	<5	For patients with acoustic tumors
Optic nerve / chiasm	Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT	Optic neuropathy Optic neuropathy Optic neuropathy	Dmax <55 Dmax 55–60 Dmax >60	<3 3–7 >7-20	Given the small size, 3D CRT is often whole organ ^{‡‡}
	Whole organ	SRS (single fraction)	Optic neuropathy	Dmax <12	<10	

CNS & PNS – Case Study

Metastatic breast cancer

3750 cGy/15 fractions

Jan 2017

Oct	2018	

Significant Cognitive Decline

Hippocampal Avoidance Whole Brain Radiotherapy

Hippocampus is a small part of the brain that plays a key role in learning, memory and spatial awareness

Fig 1. Several-fold reduction in radiation dose to hippocampi (yellow) using (A) hippocampal avoidant whole-brain radiotherapy (HA-WBRT) v (B) conventional WBRT.

HA-WBRT better preserves cognitive function

CNS & PNS – Case Study

Lung cancer with brain metastases 3000 cGy in 10 fractions Completed 05/2020

~ 1.5 years later, he lost vision in R eye; subsequently he became blind also in the left eye

MRI showed enhancement of the optic nerves

Optic Neuritis

Treated with Avastin, Pentoxifylline and Vitamin E with no improvement

Radiation effects in the nervous system typically arise as a consequence of damage to:

- A. Axons
- B. Neurons
- C Oligodendrocytes and glial cells
- D. The perikaryon
- E. Dendrites

The TD₅ as a function of length of spinal cord irradiated:

- A. decreases as a linear function of increasing cord length.
- B. initially decreases with increasing cord length, and then remains relatively constant for higher total doses.
- C. increases steeply for lengths greater than approximately 10 cm.
- D. decreases with decreasing cord length.
- E. increases with cord length before reaching a plateau.

The tolerance dose 5% in 5 yrs (TD5/5) and 50% in 5 yrs (TD50/5) necrosis of brain tissue is best represented by which of the following doses?

- A. 24Gy and 36Gy respectively
- B. 36Gy and 45Gy respectively
- C. 45Gy and 60Gy respectively
- D. 57Gy and 68Gy respectively

Doses not specifically mentioned in the slides are not going to be on the exam

Medical residents only

Which of the following statements concerning irradiation of the CNS is FALSE?

- A. Selective damage to gray matter would preclude radiation as the cause of injury
- B. Demyelination and white matter necrosis are common manifestations of radiation-induced injury to the CNS
- C. Oligodendrocytes and vascular endothelial cells are considered to be the principal target cells for radiation-induced damage to the CNS
 D. Most forms of radiation injury to the CNS are characterized by distinct pathognomonic characteristics specific to radiation-induced damage
- E. Cognitive deficits are a late effect seen in both children and adults

Medical residents only

Which of the following statements concerning the late radiation effects of the brain is FALSE?

- A. The classical late radiation effect in the brain is localized necrosis generally limited to the involved white matter, with focal coagulative necrosis and demyelination as dominant features
- B. Symptoms of late radiation effects include motor, sensory and/or speech/receptive deficits, seizures and symptoms of increased intracranial pressure
- C. The "somnolence syndrome" is observed 1-6 months post-radiation
- D. During the 3-6 month period following completion of RT, a general neurologic deterioration may occur that results from transient, diffuse demyelination
 - Arterial cerebrovasculopathy is commonly observed

The cells thought to be responsible for radiationinduced cognitive dysfunction reside in:

- A. Medulla oblongata
- B. Cerebral cortex
- C. Substantia nigra
- D Hippocampus
- E. Hypothalamus

Cute Honey

Testes


```
Self-renewal system: spermatogonia \rightarrow spermatocytes \rightarrow
spermatids \rightarrow spermatozoa
Latent period b/w irradiation and sterility
Oligospermia and reduced fertility: 0.1-0.15 Gy
Azoospermia and temporary sterility: 0.5 Gy
Recovery is dose dependent
Permanent sterility
   6 Gy – single dose
                                                   Chapter 11
   2.5-3 Gy, fractionated, 2-4 wks
Induction of sterility does not affect hormone balance, libido, or
physical capability (because Leydig cells are radioresistant)
```


Clamshell

Note that fractionated dose or continuous LDR irradiation is more effective than a single acute exposure

Testes

Chemotherapy and Sterility

A number of cytotoxic drugs have substantial effects on spermatogenesis

The **alkylating agents** included in the MOPP regimen used for Hodgkin's disease in the past led to sterility in almost all patients

The drugs were given over the course of several months, therefore, simulated LDR radiation, killing stem cells as they came into cycle

Ovaries

After the fetal stage, oocytes no longer divide D_0 of oocyte ~ 0.12 Gy

Hormonal secretion is associated with follicular maturation

Ovaries

By 3 days after birth, all cells progressed to primary oocyte stage; no further cell division

Neither latent period nor temporary sterility in females

Radiation can induce permanent ovarian failure; marked age dependence

Permanent sterility **12 Gy** – prepuberty **2 Gy**, premenopausal

Radiation sterility produces hormonal changes like those seen in natural menopause

Female Genitalia

Vulva

The skin of vulva reacts like skin elsewhere, but clinical tolerance is lower because of friction and moisture

Vagina

Acute – erythema, moist desquamation, confluent mucositis

Late – atrophic mucosa, necrosis, ulceration (90 Gy), fistula (100 Gy)

Cervix & Uterus

Dose may reach 200 Gy with intracavitary treatments Late effects include atrophy of the endometrial glands and stoma, ulceration

Testes, Ovaries Female Genitalia

TABLE 19.2. A Compilation of Tissue and Organ Sensitivities

	Injury	TD _{5/5} , Gy	TD _{50/5} Gy	Field Size
u' i			3	
Testes	Sterilization	1	2	Whole
Ovaries	Sterilization	2–3	6–12	Whole (age dep.)
Uterus	Necrosis, perforation	100	200	Whole
Vagina	Ulcer, fistula	90	100	Whole

	_			V OU ≥1J 70	
Penile bulb	Whole organ	3D-CRT	Severe erectile dysfunction	Mean dose to 95% of gland <50	<35
	Whole organ Whole organ	3D-CRT 3D-CRT	Severe erectile dysfunction Severe erectile dysfunction	D90 <50 D60-70 <70	<35 <55

Female Genitalia – Case Study

Locally advanced vulva cancer with vaginal involvement

9/2018 Follow Up

4500 cGy/ 25 fx

2250 cGy/5 fx BID

Completed treatment 9/2012

- Pain from the radiation damage to her vulva.
- Still smoking 1 pack per day
- Diffusely indurated and mildly erythematous with lymphedema changes, woody throughout
- Vagina narrowed to ~1 cm with woody induration and irregularly contoured
- Extensive radiation changes throughout vulva and groin area
- Superior aspect of gluteal fold with some skin breakdown

Which of the following statements is CORRECT concerning the effects of radiation on the gonads?

- A. Older women are more sensitive to radiation-induced sterility than younger women.
- B. An acute dose of 3 Gy can both destroy the gametogenic epithelium and eliminate the production of sex hormones in adult men.
- C. Spermatids and spermatozoa are quite radiosensitive whereas spermatogonia are relatively radioresistant.
- D. A minimum waiting period of 5 years is recommended for both men and women before attempting procreation following radiotherapy, in order to reduce the risk of radiation-induced genetic effects.
- E. If sterility in the male is not produced within the first month after the start of radiotherapy, it is unlikely to ever occur.

Blood Vessels and the Vascular Systems

Blood Vessels and the Vascular System

Artery – damage may occur after 50-70 Gy
Veins – in general are less sensitive to radiation than arteries
Capillaries – damaged by 40 Gy

Injury		TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size	
Large arteries and veins	Sclerosis	80	100	10 cm ²	

Effects of radiation on blood vessels are important because late effects of many organs have a vascular component

Medical residents only

Question

Which of the following statements concerning radiation-induced damage to the microvasculature is INCORRECT?

- A. Classic pathologic features of radiation damage to blood vessels include telangiectasia, "sausaging" and blebbing.
- B. Historically, vascular endothelial cells are considered the target cells for vascular injury, however, damage to adventitial fibroblasts and medial smooth muscle cells may also play significant roles.
- C. The order of sensitivity of blood vessel is: capillaries; arterioles; small-medium arteries; large arteries.
- D. Due to the slow turnover kinetics of vascular endothelial cells, subcellular changes in these cells are generally not seen until approximately 6-12 months after irradiation.
- E. Bone marrow transplantation can result in pulmonary and hepatic veno-occlusive disease.

Answer

Despite having cell turnover times that can be as long as months, changes in vascular endothelial cells, including alterations in the basement membrane and rough endoplasmic reticulum, have been seen within hours of irradiation.

Heart

The most radiosensitive cells of the heart are the **endothelial cells** lining the cardiovascular capillaries, while the most resistant cells are the **cardiac myocytes**

The adult cardiomyocytes has ~ 0.5% yearly turnover after 40 years of age, but the majority of lost or damaged cardiomyocytes will not be replenished after injury. Heart is a late-responding organ with α/β ratio of 1 Gy \rightarrow fractionation leads to substantial sparing

Radiation tolerance – heart is intermediate b/w the kidney and lung and the CNS

Late Effects

Pericarditis

Symptoms – chest pain, shortness of breath, lowgrade fever

Tolerance dose & volume effect – 20 Gy if more than 50% of the heart irradiated; higher for partial exposure

Cardiomyopathy

Results from dense and diffuse fibrosis **Tolerance dose & volume effect** – 30 Gy to most of the heart may reduce cardiac function; protection of part of the heart greatly reduces the incidence

Heart

Table Radiation-Induced Cardiac Toxicities

Disease Spectrum	Manifestation and Symptoms
Autonomic dysfunction	Circadian rhythm loss, heart rate variability, and loss of angina pain perception
Cardiomyopathy	Fibrosis, reduced ejection fraction, diastolic or systolic dysfunction or both, and pulmonary hypertension
Conduction system	Bundle-branch block, complete heart block, ventricular ectopic activity, and arrhythmias
Coronary artery	Accelerated atherosclerosis and risk of ischemia
Pericarditis	Effusions, constrictive pericarditis, and cardiac tamponade
Valvular	Regurgitation and stenosis
Vascular	Pulmonary artery stenosis and hypoplasia, aortic fibrosis

<u>Pericarditis</u> can occur within days to weeks of beginning radiation therapy Late pericardial disease manifests at a median of 5-7 months after radiation

Major coronary events increases linearly with mean heart dose, with no apparent threshold

Simone 2017; Semin Radiat Oncol 27: 370-377

Heart

Mechanisms

- Inflammatory pathways
- DNA damage response
- Chronic oxidative stress
- Chronic hypoxia
- Epigenetic regulation
- Telomere extension

Mechanism of Radiation-Induced Fibrosis

Spetz 2018; Curr Treat Options Cardio Med 20: 31
Heart

Effect of Chemotherapy

Adriamycin increases the severity of radiation-induced cardiac complications

In addition, adriamycin may reveal latent radiation damage many years after radiation therapy (this is known as **"radiation recall"**)

		Injury	,	$\Gamma D_{5/5}, Gy$	TD _{50/5} , Gy	Field	Size
	Heart	Pericarditis and p	pancarditis	40 60	50 70	Who 1/3	le
Heart	Pericardium Pericardium	3D-CRT 3D-CRT	Pericarditis Pericarditis	Mean d V30 <4	lose <26 6%	<15 <15	Based on single study
	Whole organ	3D-CRT	Long-term cardiac morta	lity V25 <1	0%	<1	Overly safe risk estimate based o model predictions

Which one of the following statements regarding radiation-induced heart disease (RIHD) is FALSE? 1 Gy

- A. The α/β ratio for pericarditis is approximately 8 Gy.
- B. The most radiosensitive cells of the heart are the endothelial cells lining the cardiovascular capillaries, while the most resistant cells are the cardiac myocytes.
- C. Fraction size, total dose and volume are all factors that can affect the tolerance dose for RIHD.
- D. A number of studies have shown that patients <20 years and >60 years of age have an increased risk of developing RIHD.
- E. Anthracyclines combined with radiation enhance cardiotoxicity compared to radiation alone.

Which of the following conditions is NOT an expected manifestation of radiation-induced heart disease?

- A. Accelerated coronary atherosclerosis
- B Hypertrophic cardiomyopathy
- C. Cardiac fibrosis
- D. Pericarditis
- E. Cardiac myocyte degeneration

Which of the following statements concerning the effects of radiation on the heart is TRUE?

- A. Radiation associated valvular disease is rare in patients receiving ≥ 35 Gy to the heart.
- B. In the absence of concurrent chemotherapy, cardiomyopathy is observed during or shortly after the completion of radiotherapy
- C. An increased incidence of cardiovascular disease among Hodgkin's disease survivors who received mediastinal radiotherapy has not been observed
- D.) The critical structure associated with the pathogenesis of radiation-induced heart disease appears to be the endothelial lining of blood vessels
- E. An excess relative risk for myocardial infarction has been detected in the Japanese atomic bomb survivors, but only among those who received doses greater than 10 Gy

With respect to radiation-induced heart disease (RIHD), which one of the following statements is FALSE?

- A. Individuals 20-65 years of age have a lower risk for the development of radiation-induced coronary artery disease compared with other age groups
- B. The parietal pericardium may be damaged by radiation therapy, with the injury typically presenting as an increased thickness of the fibrous layer
- C. The risk of pericarditis increases with increasing dose per fraction
- D. The majority of cardiac complications observed are consistent with the hypothesis that the most radiosensitive cells are the cardiomyocytes
- E. Cardiac effects are described as "delayed", and typically appear months to years after radiotherapy

Bone and Cartilage

Children

Doses as low as 10 Gy can slow growth

Doses above 20 Gy can close growth plate

Sequelae are particularly serious in children younger than 2 years of age, and radiation can affect stature adversely up to the time of the puberty

Include entire vertebral body in treatment field

Craniospinal Irradiation w/ proton therapy

Bone and Cartilage

Adults

Osteoradionecrosis (discussed earlier)

Fracture – femoral and humeral heads Irradiating bone leads to loss of osteoblasts and osteoclasts responsible for bone maintenance and remodeling, causing the bone to become brittle and prone to injury $TD_{5/5} - 52$ Gy $TD_{50/5} - 65$ Gy

fracture of the fibs and clavicles are sometimes seen in patients receiving RT for breast cancer

Bone and Cartilage

	Injury	TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size
Growing cartilage, child bone	Growth arrest, dwarfing	10	30	Whole
Mature cartilage, adult bone	Necrosis, fracture, sclerosis	60 60	100 100	Whole 10 cm ²

All of the following normal tissue complications are of concern after high-dose irradiation of a <u>short segment</u> of bone, EXCEPT:

- A. osteoradionecrosis
- B. stress fractures
- C. growth retardation after irradiation of epiphyseal in children
- D. radiation-induced bone sarcomas
 - E) bone marrow failure

Compilation of Tissue and Organ Tolerance

TABLE 20.2 A Co	ABLE 20.2 A Compilation of Tissue and Organ Sensitivities			
	Injury	TD _{5/5} , Gy	TD _{50/5} , Gy	Field Size
Class I organs				
Bone marrow	Aplasia, pancytopenia	2.5	4.5	Whole segment
Liver	Acute and chronic hepatitis	30 50	40 55	Whole 1/3
Intestine	Obstruction, perforation, fistula	40 50	55 65	Whole 1/3 or 1/2
Stomach	Perforation, ulcer, hemorrhage	50 60	65 70	Whole 1/3
Brain	Infarction, necrosis	45 60	60 75	Whole 1/3
Spinal cord	Infarction, necrosis	47 50	70	20 cm 5 or 10 cm
Heart	Pericarditis and pancarditis	40 60	50 70	Whole 1/3
Lung	Acute and chronic pneumonitis	17.5 45	24.5 65	Whole 1/3
Kidney	Acute and chronic nephrosclerosis	23 50	28 45	Whole 1/3 or 1/2
Class II organs				
Oral cavity and pharynx	Ulceration, mucositis	60	75	50 cm ²
Skin	Acute and chronic dermatitis, telangiectasia	55	65	100 cm ²
Esophagus	Esophagitis, ulceration	55 60	50 70	Whole 1/3
Rectum	Ulcer, stenosis, fistula	60	80	No volume effect
Salivary glands	Xerostomia	32	46	1/3 or 1/2
Bladder	Contracture	65 80	80 85	2/3 1/3
Ureters	Stricture	70	100	5–10 cm length
Testes	Sterilization	1	2	Whole
Ovaries	Sterilization	2–3	6–12	Whole (age dependent

TABLE 20.2 A Compila	tion of Tissue and Organ Sen	sitivities (Con	tinued)	
	Injury	TD5/5, Gy	TD _{50/5} , Gy	Field Size
Growing cartilage, child bone	Growth arrest, dwarfing	10	30	Whole
Mature cartilage, adult bone	Necrosis, fracture, sclerosis	60 60	100 100	Whole 10 cm ²
Eye				
Retina	Blindness	45	65	Whole
Cornea		50	6	Whole
Lens	Cataract	10	18	Whole
Endocrine				
Thyroid	Hypothyroidism	45	150	Whole
Adrenal	Hypoadrenalism	60	—	Whole
Pituitary	Hypopituitarism	45	200	Whole
Peripheral nerves	Neuritis	60	100	_
Ear				
Middle	Serous otitis	30	40	No volume effect
Vestibular	Meniere syndrome	60	70	_
Class III organs				
Muscle				
Child	Atrophy	20	40	Whole
Adult	Fibrosis	60	80	Whole
Lymph nodes and lymphatics	Atrophy, sclerosis	50	70	Whole node
Large arteries and veins	Sclerosis	80	100	10 cm ²
Uterus	Necrosis, perforation	100	200	Whole
Vagina	Ulcer, fistula	90	100	Whole
Breast				
Child	No development	10	15	Whole
Adult	Atrophy, necrosis	50	100	Whole

Tolerance Dose – Simplified Table

Organ	Injury	TD5%/5yr	TD50%/5yr
Bone marrow	aplasia	2.5	4.5
Intestine	perforation	40	55
Liver	hepatitis	30	40
Brain	necrosis	45	60
Lung	pneumonitis	17	24
Kidney	nephrosclerosis	23	28
Skin	dermatitis	55	65
Rectum	ulcer, fistula	60	80
Saliv. glands	xerostomia	32	46
Testes	sterilization	1	2
Ovaries	sterilization	2-3	6-12
Bone (child)	growth arrest	10	30
Bone (adult)	necrosis	60	100
P. nerves	neuritis	60	100
Muscle	fibrosis	60	80
Breast	atrophy	50	100

QUANTEC – IJROBP 2010

INTRODUCTORY PAPER

USE OF NORMAL TISSUE COMPLICATION PROBABILITY MODELS IN THE CLINIC

Lawrence B. Marks, M.D.,* Ellen D. Yorke, Ph.D.,[†] Andrew Jackson, Ph.D.,[†] Randall K. Ten Haken, Ph.D.,[‡] Louis S. Constine, M.D.,[§] Avraham Eisbruch, M.D.,[‡] Søren M. Bentzen, Ph.D.,^{||} Jiho Nam, M.D.,* and Joseph O. Deasy, Ph.D.,[¶]

*Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC; [†]Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY; [†]Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; [§]Department of Radiation Oncology, University of Rochester Cancer Center, Rochester, NY; [∥]Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI; and [¶]Department of Radiation Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO

The Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) review summarizes the currently available three-dimensional dose/volume/outcome data to update and refine the normal tissue dose/volume tolerance guidelines provided by the classic Emami *et al.* paper published in 1991. A "clinician's view" on using the QUANTEC information in a responsible manner is presented along with a description of the most commonly used normal tissue complication probability (NTCP) models. A summary of organ-specific dose/volume/outcome data, based on the QUANTEC reviews, is included. © 2010 Elsevier Inc.

QUANTEC Summary Table

Table 1. QUANTEC Summary: Approximate Dose/Volume/Outcome Data for Several Organs Following Conventional Fractionation (Unless Otherwise Noted)*

Organ	Volume segmented	Irradiation type (partial organ unless otherwise stated) ^{\dagger}	Endpoint	Dose (Gy), or dose/volume parameters [†]	Rate (%)	Notes on dose/volume parameters
Brain	Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT	Symptomatic necrosis Symptomatic necrosis Symptomatic necrosis	Dmax <60 Dmax = 72 Dmax = 90	<3 5 10	Data at 72 and 90 Gy, extrapolated from BED models
	Whole organ	SRS (single fraction)	Symptomatic necrosis	V12 <5–10 cc	<20	Rapid rise when V12 > 5–10 cc
Brain stem	Whole organ	Whole organ	Permanent cranial	Dmax <54	<5	
	Whole organ	3D-CRT	Permanent cranial neuropathy or necrosis	D1–10 cc \leq 59	<5	
	Whole organ	3D-CRT	Permanent cranial neuropathy or necrosis	Dmax <64	<5	Point dose <<1 cc
	Whole organ	SRS (single fraction)	Permanent cranial neuropathy or necrosis	Dmax <12.5	<5	For patients with acoustic tumors
Optic nerve / chiasm	Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT	Optic neuropathy Optic neuropathy Optic neuropathy	Dmax <55 Dmax 55–60 Dmax >60	<3 3–7 >7-20	Given the small size, 3D CRT is often whole organ ^{‡‡}
	Whole organ	SRS (single fraction)	Optic neuropathy	Dmax <12	<10	
Spinal cord	Partial organ Partial organ Partial organ	3D-CRT 3D-CRT 3D-CRT	Myelopathy Myelopathy Myelopathy	Dmax = 50 Dmax = 60 Dmax = 69	0.2 6 50	Including full cord cross-section
	Partial organ Partial organ	SRS (single fraction) SRS (hypofraction)	Myelopathy	Dmax = 13 Dmax = 20	1 1	Partial cord cross-section irradiated 3 fractions, partial cord cross-section irradiated

QUANTEC Summary Table

	Bilateral whole parotid glands	3D-CRT	Long term parotid salivary function reduced to <25% of pre-RT level	Mean dose <39	<50	For combined parotid glands (per Fig. 3 in paper) ¶
Pharynx	Pharyngeal constrictors	Whole organ	Symptomatic dysphagia and aspiration	Mean dose <50	<20	Based on Section B4 in paper
Larynx	Whole organ	3D-CRT	Vocal dysfunction	Dmax <66	<20	With chemotherapy, based on single study (see Section A4.2 in paper)
	Whole organ	3D-CRT	Aspiration	Mean dose <50	<30	With chemotherapy, based on single study (see Fig. 1 in paper)
	Whole organ	3D-CRT	Edema	Mean dose <44	<20	Without chemotherapy, based
	Whole organ	3D-CRT	Edema	V50 <27%	<20	larynx cancer**
Lung	Whole organ	3D-CRT	Symptomatic pneumonitis	$V20 \le 30\%$	<20	For combined lung. Gradual dose response
	Whole organ Whole organ Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT 3D-CRT 3D-CRT	Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis	Mean dose = 7 Mean dose = 13 Mean dose = 20 Mean dose = 24 Mean dose = 27	5 10 20 30 40	Excludes purposeful whole lung irradiation
Esophagus	Whole organ	3D-CRT	Grade \geq 3 acute esophagitis	Mean dose <34	5-20	Based on RTOG and several studies
	Whole organ	3D-CRT	Grade ≥ 2 acute esophagitis	V35 <50%	<30	A variety of alternate threshold doses
	Whole organ Whole organ	3D-CRT 3D-CRT	Grade ≥ 2 acute esophagitis Grade ≥ 2 acute esophagitis	V50 <40% V70 <20%	<30 <30	Appears to be a dose/volume response
Heart	Pericardium Pericardium	3D-CRT 3D-CRT	Pericarditis Pericarditis	Mean dose <26 V30 <46%	<15 <15	Based on single study
	Whole organ	3D-CRT	Long-term cardiac mortality	V25 <10%	<1	Overly safe risk estimate based on model predictions

QUANTEC Summary Table

						irradiated
Cochlea	Whole organ	3D-CRT	Sensory neural hearing loss	Mean dose ≤ 45	<30	Mean dose to cochlear, hearing at 4 kHz
	Whole organ	SRS (single fraction)	Sensory neural hearing loss	Prescription dose ≤ 14	<25	Serviceable hearing
Parotid	Bilateral whole parotid glands	3D-CRT	Long term parotid salivary function reduced to <25% of pre-RT level	Mean dose <25	<20	For combined parotid glands [¶]
	Unilateral whole parotid gland	3D-CRT	Long term parotid salivary function reduced to <25% of pre-RT level	Mean dose <20	<20	For single parotid gland. At least one parotid gland spared to <20 Gy [¶]
		,	Å	Å		· A
Rectum	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity, Grade ≥ 3 late rectal toxicity	V50 <50%	<15 <10	Prostate cancer treatment
	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity, Grade ≥ 3 late rectal toxicity	V60 <35%	<15 <10	
	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity, Grade ≥ 3 late rectal toxicity	V65 <25%	<15 <10	
	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity, Grade ≥ 3 late rectal toxicity	V70 <20%	<15 <10	
	Whole organ	3D-CRT	Grade ≥ 2 late rectal toxicity, Grade ≥ 3 late rectal toxicity	V75 <15%	<15 <10	
Bladder	Whole organ	3D-CRT	Grade \geq 3 late RTOG	Dmax <65	<6	Bladder cancer treatment. Variations in bladder size/shape/ location during RT hamper ability to generate accurate data
	Whole organ	3D-CRT	Grade ≥3 late RTOG	$V65 \le 50 \% \\ V70 \le 35 \% \\ V75 \le 25 \% \\ V80 \le 15 \%$		Prostate cancer treatment Based on current RTOG 0415 recommendation
Penile bulb	Whole organ	3D-CRT	Severe erectile dysfunction	Mean dose to 95% of gland <50	<35	
	Whole organ Whole organ	3D-CRT 3D-CRT	Severe erectile dysfunction Severe erectile dysfunction	D90 [∥] <50 D60-70 <70	<35 <55	
	5		*			

Outlines

- Cells and Tissues
- Early (Acute) and Late Effects
- Functional Subunits in Normal Tissues
- The Volume Effect in Radiotherapy: Tissue Architecture
- Radiation Pathology of Tissues
 - □ Casarett's Classification
 - □ Michalowski's H- and F-Type Populations
- Growth Factors
- Specific Tissues and Organs
- Grading of Late Effects

Mechanism

Organ by organ clinical observation

EORTC and **RTOG** held the Late Effects of Normal Tissue (LENT) Conference in 1992, and introduced **SOMA** classification for late toxicity

SOMA = <u>Subjective</u>, <u>Objective</u>, <u>Management criteria with</u> <u>Analytic</u> laboratory and imaging procedures

Subjective Symptoms perceived by the patient		
Objective Signs that can be assessed by clinician		
Management	Active steps taken to ameliorate symptoms	
Analytic	Findings that are quantifiable	

These scales, specific for each organ, form a scaffold for understanding the expression of later injury

Prostate Radiation

LENT / SOMA PATIENT QUE	STIONNAIRE
ID No:	
Date Completed:	
(PLEASE ANSWER QUESTIONS AS TO HOW YOU'VE 2 WEEKS ONLY, BY CIRCLING THE APP	EBEEN FEELING OVER TH ROPRIATE ANSWER)
Please state if you have had any operations relating to your bow	vels and when this took place
Do you get any pain when you open your bowels?	0 = No
	2 = Sometimes
	3 = Often
	4 = Always
If Yes, how severe is this pain?	1 = Minimal
	2 = Tolerable
	3 = Intense
	4 = Excruciating
When you feel a desire to open your bowels	0 = No
When you feel a desire to open your bowels Jo you need to go straight away?	0 = No 1 = Monthly
When you feel a desire to open your bowels do you need to go straight away?	0 = No 1 = Monthly 2 = Weekly
When you feel a desire to open your bowels do you need to go straight away?	0 = No 1 = Monthly 2 = Weekly 3 = Daily
When you feel a desire to open your bowels do you need to go straight away?	0 = No 1 = Monthly 2 = Weekly 3 = Daily 4 = Constantly
When you feel a desire to open your bowels do you need to go straight away? How often have you felt the desire to open your bowels	0 = No 1 = Monthly 2 = Weekly 3 = Daily 4 = Constantly 0 = Never
When you feel a desire to open your bowels do you need to go straight away? How often have you felt the desire to open your bowels urgently and were unable to?	0 = No 1 = Monthly 2 = Weekly 3 = Daily 4 = Constantly 0 = Never 1 = Monthly
When you feel a desire to open your bowels do you need to go straight away? How often have you felt the desire to open your bowels urgently and were unable to?	0 = No 1 = Monthly 2 = Weekly 3 = Daily 4 = Constantly 0 = Never 1 = Monthly 2 = Weekly
When you feel a desire to open your bowels do you need to go straight away? How often have you felt the desire to open your bowels urgently and were unable to?	0 = No 1 = Monthly 2 = Weekly 3 = Daily 4 = Constantly 0 = Never 1 = Monthly 2 = Weekly 3 = Daily

Subjective

LENT SOMA SCALE FO OBJECTIVE CRITERIA	DE BLADDER CARCINOMA	ADIOTHERAPY Lent Soma V5 15/05/01 Blad M
Hospital Number	Date of Assessment	Initials of Researcher
Rectum/Bowel		
Bowel Stricture 0 = None 1 = >2/3 normal di 2 = 1/3 - 2/3 normal 3 = <1/3 normal di 4 = Complete obstru	ameter with dilatation mal diameter with dilatation meter action	
Ulceration 0 = None 1 = Superficial 5 : 2 = Superficial > : 3 = Deep ulcer 4 = Perforation/fin	.cm ² .cm ² stula	
Management of Bleeding 0 = No bleeding 1 = Iron therapy 2 = Occasional trans: 3 = Frequent trans: 4 = Surgical inter;	nsfusion Eusions rention	

Proctoscopy. assessment of lumen and mucosa:	0=No
CT Scan, assessment of wall thickness, sinus and fistula formation:	0=No _
MR Scan, assessment of wall thickness,	0=No _ _ _ _ _ _ _ _ _
sinus and fistula formation:	1=Yes _ _ _ _ _ _ _ _ _ _
Hospital Number Date of Assessment	Initials of Researcher
NB If information Not Known fill boxes with 9's	, if Not Applicable fill boxes with 8's
Page	1

Objective

Management

Analytic

LENT and SOMA – Anatomic Sites

Central Nervous System

Brain Spinal cord Male hypothalamic/pituitary/gonadal axis Female hypothalamic/pituitary/gonadal axis

Head and Neck

Eye Ear Mucosa Mandible Teeth Larynx Thyroid and hypothalamic/pituitary/thyroid axis

Gastrointestinal system

Esophagus Stomach Small intestine/colon Rectum

Heart

Blood vessels

Lung

Genitourinary system

Kidney Ureter Bladder/urethera Testes Male sexual dysfunction

Bone, muscle, and skin

Muscle/soft tissue Peripheral nerves Growing bones Mature bone (excluding mandible) Bone marrow Skin/subcutaenous tissue

Gynecologic system

Vulvar Vagina Uterus/reproductive organs Female sexual dysfunction

Major digestive glands

Breast

Central Nervous System SOMA

Subjective	Objective	Management	Analytic
Headache	Neurologic deficit	Anticonvulsives	MRI
Somnolence	Cognitive function	Steroids	СТ
Intellectual deficit	Mood and personality changes	Sedation	MRS
Functional competence	Seizures		PET
Memory			Magnetic mapping
			Serum
			Cerebrospinal Fluid

Example of LENT and SOMA Scoring System and Grading Categories

	Grade 1	Grade 2	Grade 3	Grade 4
Subjective (e.g., pain)	Occasional and minimal	Intermittent and tolerable	Persistent and intense	Refractory and excruciating
Objective (e.g., neurologic deficit)	Barely detectable	Easily detectable	Focal motor signs, vision disturbances, etc	Hemiplegia, hemisensory deficit, etc
Management (e.g., pain)	Occasional nonnarcotic	Regular nonnarcotic	Regular narcotic	Surgical intervention
Analytic (e.g., CT and MRI, labs)				

Common Terminology Criteria for Adverse Events (CTCAE)

Common Terminology Criteria for Adverse Events (CTCAE)

Version 5.0 Published: November 27, 2017

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Cancer Institute

Grade 1	Mild
Grade 2	Moderate
Grade 3	Severe
Grade 4	Life-threatening or disabling
Grade 5	Death