ARROCase Nasopharynx Cancer

Kara D. Romano, MD Daniel M. Trifiletti, MD Paul W. Read, MD University of Virginia

October 20, 2016

Case: History

H&P:

- 37 yo male presents with left-sided neck mass, ear pressure, otalgia, and pain radiating down the ipsilateral neck.
- ROS:
 - + nose bleeds, numbness on the left cheek
 - - trismus, dysphagia, odynophagia, diplopia, or changes in vision
- Pertinent physical exam findings:
 - ECOG: (0) Fully active
 - HEENT: No mucosal lesions on direct/indirect examination. Poor dentition no molars. Perforated left TM with erythematous auditory canal. Tenderness to palpation of the left post-auricular space.
 - Lymphatics: Firm, matted adenopathy of the left level II-III nodes, with palpable ipsilateral supraclavicular nodes.
- Flexible nasal laryngoscopy: **ulcerated lesion of the left nasopharynx** obstructing the left Eustachian tube orifice, **fullness of the left fossa of rosenmuller**, extending toward the soft palate and posterior pharyngeal wall with partial obstruction of the pharynx.

Common presenting signs & symptoms

- Neck mass
- Epistaxis
- Middle ear effusion/otalgia/decreased hearing
- Headache/pain
- Nasal congestion and drainage
- Trismus
- Cranial nerve deficits
 - Petro-sphenoidal syndrome (CN III-IV, VI): Oculomotor signs/symptoms
 - Retro-parotidian syndrome (CN IV-XII): Enophthalmos, ptosis, miosis

Case: Imaging

CT Neck

Multiple enlarged bilateral cervical lymph nodes (levels II - V), including supraclavicular node (level IV)

MRI Orbit, Face, & Neck

Enlarged contralateral retro-pharyngeal lymph node

October 20, 2016

ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

ARRO

Work-Up & Evaluation¹

- H&P including complete head & neck physical exam
 - Tobacco history
- Flexible nasopharyngeal fiber-optic laryngoscopy
- Labs
 - EBV titers
- Biopsy of the primary site or FNA of neck
- MRI w/ contrast include skull base, nasopharynx, and neck to clavicles
- CT Neck & Chest, as clinically indicated
- PET-CT (especially for non-keratinizing histology, endemic phenotype, N2 or N3, and stage III – IV)
- Medical oncology consultation
- Dental evaluation
- Nutrition/GI evaluation
- Speech and swallow evaluation
- Audiology evaluation

October 20, 2016

Differential Diagnosis of malignancy for nasopharyngeal mass

If small nasopharyngeal mass and confined to the mucosa:

- Prominent, but normal adenoidal tissue
- Nasopharyngeal lymphoma
- Early primary nasopharyngeal malignancy

If larger nasopharyngeal mass +/- involvement of the skull base:

- Primary nasopharyngeal malignancy
- Adenoid cystic carcinoma
- Papillary adenocarcinoma
- Melanoma
- Plasmacytoma
- Lymphoma
- Chordoma/Chondrosarcoma
- Meningioma
- Rhabdomyosarcoma/other sarcoma
- Metastases

Case: Pathology

- He underwent US-guided FNA of the left cervical neck mass
- Pathology: poorly differentiated carcinoma
 - Pleomorphic epithelioid cells in a background of lymphocytes
 - + cytokeratin
 - p16 negative
 - EBV in-situ hybridization negative
 - Neuron specific enolase negative

Epithelioid carcinoma

Nasopharynx Cancer

Incidence:

- 5 per 1 million in the USA
- 100 400 per 1 million in Asia/Africa

Risk Factors:

- Salted or pickled foods
- Metal dust
- Epstein-Barr virus (EBV)
- Smoking
- HLA/Genetic

Presenting signs/symptoms:

- Palpable cervical adenopathy
 - 70% cN+
 - 90% pN+ (50% bilateral)
- Nasal discharge
- Hearing loss
- Trismus
- Cranial neuropathy (CN II XII)

Anatomy: Skull Base & Nasopharynx

 $C1 - C2^{*}$

*anatomic boundaries of the NPx

October 20, 2016

Anatomy: Skull Base & Nasopharynx

Parapharyngeal space

October 20, 2016

ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

RR()

WHO Grading System Nasopharyngeal Carcinoma

- WHO I: keratinizing squamous cell carcinoma
 - 20% prevalence
 - Associated with smoking, HPV
 - Poor LC
 - Lower risk of DM
- WHO II: non-keratinizing, squamous cell carcinoma
 - (A) Differentiated type
 - (B) Undifferentiated type
 - 30 40% prevalence
- WHO III: undifferentiated, lympho-epithelial, or basaloid squamous cell carcinoma
 - 40 50% prevalence
 - Most strongly associated with EBV
 - Better LC
 - Higher risk of DM

AJCC Staging System² Nasopharyngeal Carcinoma

Tumor

T1: confined to NPx, OPx, and/or nasal cavity without parapharyngeal extension

T2: parapharyngeal extension

T3: bony structures of skull case of paranasal sinuses

T4: intra-cranial extension, cranial nerves, HPx, orbit, or with extension to infra-temporal fossa/masticator space

Nodes

N1: unilateral, \leq 6 cm, above SCLV fossa; or uni/bilateral RP nodes, \leq 6 cm

N2: bilateral, ≤ 6 cm, above SCLV fossa

N3a: > 6cm

N3b: SCLV fossa*

Metastases

M1: any distant metastasis

*SCLV fossa is the triangular region defined by the 3 points:

- (1) Superior margin of the sternal end of clavicle
- (2) Superior margin of lateral end of clavicle
- (3) Point where neck meets shoulder

Abbreviations:

NPx: nasopharynx, OPx: oropharynx, HPx: hypopharynx, SCLV: supraclavicular

AJCC Staging System² Nasopharyngeal Carcinoma

	T1	T2	Т3	T 4
NO	I	Ш	Ш	IVA
N1	Ш	Ш	Ш	IVA
N2	Ш	Ш	Ш	IVA
N3	IVB	IVB	IVB	IVB
M1	IVC	IVC	IVC	IVC

Case: Management

- cT1 cN3b cM0, stage IVB, p16- EBV- poorly differentiated nasopharyngeal carcinoma
- Consultation with Otolaryngology, Medical Oncology, Radiation Oncology
- Treatment options for T2-4 or N+ include:
 - Concurrent chemoradiation \rightarrow +/- adjuvant chemo
 - Induction chemo \rightarrow concurrent chemoradiation

Case: Management

- This patient received:
 - Concurrent CRT to 70 Gy in 33 fractions with weekly cisplatin 40 mg/m²
 - Adjuvant/consolidation cisplatin/5-FU

Radiation Planning

- Simulation:
 - Supine, long mask, IV contrast:
 - Co-register with MRI +/- PET-CT
- Radiation Dose/Fractionation:
 - PTV1: 69.96 Gy in 33 fractions (2.12 Gy/Fx)
 - PTV2: 59.4 Gy in 33 fractions (1.8 Gy/Fx)
 - PTV3: 54 Gy in 33 fractions (1.63 Gy/Fx)
 - Consider hyper-fractionation if dose to optic structures/brainstem would be otherwise unacceptable

Radiation Technique

- IMRT
- Proton beam radiotherapy
- Brachytherapy
 - Intracavitary boost
 - Consider for recurrent disease
 - Possible dose escalation of early/advanced primary tumors

Radiation Contouring

- PTV1 (69.96 Gy)
 - Gross disease
- PTV2 (59.4 Gy)
 - High risk subclinical disease:
 - Sphenoid sinus
 - Cavernous sinus
 - Skull base
 - Clivus
 - Posterior 1/3 of maxillary sinus
 - Posterior 1/3 of nasal cavity
 - Pterygopalatine fossae
 - Parapharyngeal space
 - Retropharyngeal space
 - Soft palate

- PTV3 (54 Gy):
 - Elective nodal coverage:
 - Retrostyloid space
 - Bilateral IB V (can omit IB, if N0)

Contouring references:

- e-contour <u>http://econtour.org/cases/2</u>
- http://www.nyp.org/pdf/imrt_2010_talk2_lee.pdf

Dose Constraints³

Critical normal structures (higher priority):

•	Brainstem, optic nerves, chiasm	Max < 54 Gy
•	Spinal cord	Max < 45 Gy
•	Mandible/TMJ	Max < 70 Gy
•	Temporal lobes	Max < 60 Gy

Other normal structures (lower priority):

Inner/middle ears (especially with concurrent Cisplatin)

• Parotid glands

Tongue

Eyes

Lens

Glottic larynx

•

•

.

Mean ≤ 26 Gy in at least one gland,
or at least 20 cc of the combined volume of both parotid glands to receive < 20 Gy,
or at least 50% of one gland to receive < 30 Gy
Max < 55 Gy
Mean < 50 Gy
Mean < 35 Gy
Mean < 45 Gy
ALARA

Case: Target Volumes

Case: Isodose Distribution

October 20, 2016

Case: Isodose Distribution

October 20, 2016

Case: Isodose Distribution

October 20, 2016

Case: Dose Volume Histogram

ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

<u>≁</u>•KK()

Treatment Algorithm

Stage	Treatment options	
T1 N0	Definitive RT	
T1 N+ T2-4 N0 T2-4 N+	 Concurrent CRT → +/- adjuvant chemo Induction chemo → concurrent CRT 	
Tx Nx M1	 Chemotherapy (platinum-based) Concurrent CRT 	

2 ()

Chemotherapy

Evidence for Concurrent + Adjuvant⁴⁻⁶

	Intergroup 0099	RTOG 0225
	Al Sarraf et al., JCO 1998	Lee et al., JCO 2009
Design	Randomized, phase III	Phase II
# Patients	147	68
Treatment	RT alone vs. CRT	RT +/- Chemo (for ≥T2 and/or N+)
Radiation	Primary tumor: 70 Gy	Primary Tumor: 70 Gy at 2.12 Gy/Fx
	Lymph nodes	Intermediate risk: 59.4 Gy at 1.8 Gy/Fx
	N0: 50 Gy	
	N+ ≤2cm: 66 Gy	
	N+ >2cm: 70 Gy	
Chemotherapy	Concurrent: cisplatin 100 mg/m ² q3weeks	Concurrent: cisplatin 100 mg/m ² q3weeks
	Adjuvant: cisplatin 80 mg/m ² + 5-FU 100 mg/m2/day q4weeks x 4	Adjuvant: cisplatin 80 mg/m ² + 5-FU 100 mg/m2/day q4weeks x 4
Outcomes	3-year PFS: 24 → 69% (p < .001)	2-year PFS: 72.7%
	3-year OS: 46 → 76% (p < .001)	2-year OS: 80.2%
Comments	Large # of WHO type I	94% WHO types II – III
	RT alone arm performed poorly	IMRT is feasible
	Closed early due to SS improved survival with chemo	No excessive toxicity

Results of Intergroup 0099 study confirmed by Chan *et al.* CRT with weekly cisplatin vs. RT alone led to 5-year OS improvement 59 → 70%

Chemotherapy Evidence for Induction:

- No demonstrated benefit of induction chemo
- NCCN Guidelines category 3 recommendation

Evidence for Adjuvant⁷:

- No demonstrated benefit for adjuvant chemo following definitive RT or CRT, although long term data not yet available
- NCCN Guidelines category 2B recommendation

Follow Up for Nasopharyngeal Cancer

- H&P + complete H&N physical exam +/- mirror/fiberoptic exam
 - q1-3 months for year 1
 - q2-6 months for year 2
 - q4-8 months for years 3 5
 - Yearly for years > 5
- Imaging for signs/symptoms
- TSH yearly (if irradiated)
- Speech/swallowing/dental/hearing evaluations
- Consider EBV-DNA monitoring

Nasopharynx Clinical Pearls

- Uncommon in the United States
- High likelihood of distant metastases
- Rarely, parotid nodal relapses can occur
- Due to the anatomic location, RT traditionally used over surgery
- Local control with RT alone of early (T1 T2) tumors 80 90%
- Local control with RT alone of T3 T4 tumors 30 65%
- Concurrent cisplatin-based chemo + RT has been shown to improve OS
- No evidence to support induction chemotherapy
- Little evidence to support adjuvant chemotherapy, although awaiting further results of Chen *et al.* phase 3 randomized trial
- RT technique is IMRT with simultaneous integrated boosts to 70 Gy, 59.4 Gy, and 54 Gy

References

- 1. National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines. Head and Neck Cancers, version 1.2015, Available at: http://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf, Accessed: March 28, 2016.
- 2. Edge SB, Byrd DR, Compton CC, et al. American Joint Committee on Cancer (AJCC) Cancer Staging Manual (Seventh Edition)New York, NY: Springer; 2010.
- Lee N, RTOG 0225: A Phase II Study of Intensity Modulated Radiation Therapy (IMRT) +/ Chemotherapy for Nasopharyngeal Cancer, Available at: https://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=0225, Accessed: September 14, 2016.
- 4. Al-Sarraf M, LeBlanc M, Giri PG, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol 1998;16:1310-1317.
- 5. Lee N, Harris J, Garden AS, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol 2009;27:3684-3690.
- 6. Chan AT, Leung SF, Ngan RK, et al. Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 2005;97:536-539.
- 7. Chen L, Hu CS, Chen XZ, et al. Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial. Lancet Oncology 2012;13:163-171.

