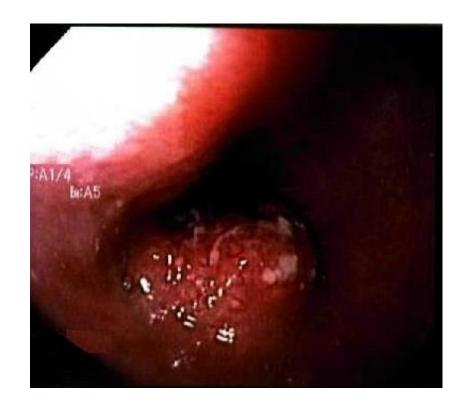
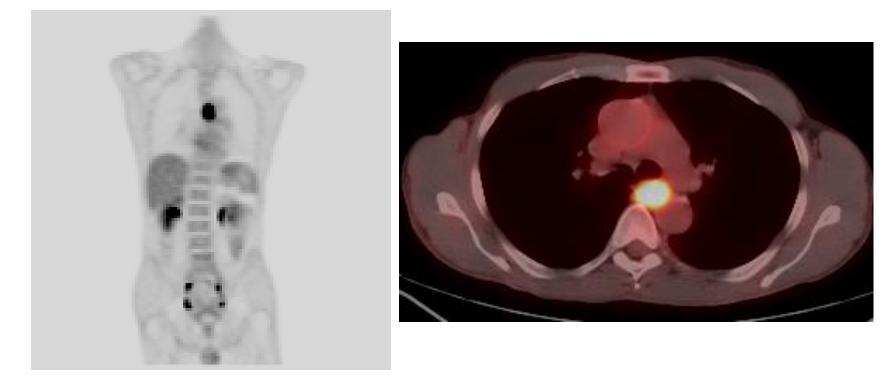
ARRO*Case* Esophageal Cancer

Mark Zaki, MD Michael Dominello, DO Faculty Advisor: Steven Miller, MD Detroit Medical Center Wayne State University School of Medicine Karmanos Cancer Center Detroit

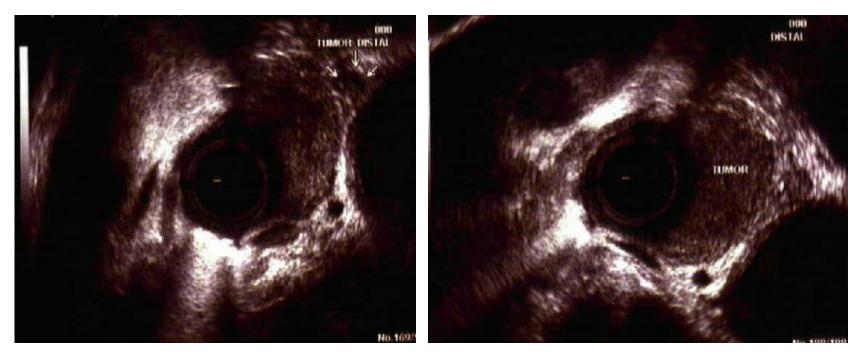


Case: Clinical Presentation


- 58 y/o male with 3 month history of dysphagia initially to solids, progressing to liquids
- Odynophagia
- Vague mid-chest discomfort
- 15 pound weight loss over the past 3 months
- Denies vomiting or regurgitation of food
- Denies cough/SOB
- KPS 80

Work-Up: Upper Endoscopy

- Large, friable, malignantappearing mass noted spanning 25-31 cm from the incisors
- Occupying 50-60% of the lumen
- Remainder of endoscopic exam including stomach and duodenum were normal
- Biopsy was obtained, revealing moderately differentiated sqaumous cell carcinoma



Work-Up: PET/CT Scan

- Large area of FDG avid wall thickening seen in mid esophagus, with a maximal SUV of 12.7
- No FDG avid lymphadenopathy is identified to suggest metastatic disease
- The distribution of the FDG is otherwise within physiological limits

Work-Up: Endoscopic Ultrasound

- Hypoechoic lesion extending through the muscularis propria
- No abnormal lymphadenopathy was noted, confirming the lesion to be T3 N0
- No frank invasion into the surrounding structures was noted

Epidemiology

- Two distinct histopathologic types: squamous cell carcinoma and adenocarcinoma
- Relatively uncommon in the US
- Lifetime risk of being diagnosed with the disease is less than 1%
- 18,170 new cases in 2014
- 15,450 patients expected to die of the disease

Risk Factors

- Tylosis
- Plummer-Vinson Syndrome
- Caustic injury
- HPV (SCC)
- Tobacco
- Alcohol
 - 90% of SCC in Western Europe and North America can be attributed to tobacco and alcohol use
- Obesity, GERD, Barrett's Esophagus (adenoca)
- Raw fruits and vegetables are protective

Anatomy

- Cervical esophagus
 - Cricopharyngeus to the thoracic inlet
 - 15-18 cm from the incisors
- Upper third
 - Thoracic inlet to the carina
 - 18-24 cm from the incisors
- Middle third
 - Carina to the inferior pulmonary veins
 - 24-32 cm from the incisors
- Lower third
 - Traversing the remaining distance to the GE junction
 - 32-40 cm from the incisors

¹DeVita, V. & Lawrence, T. & Rosenberg, S. (2011). *CANCER* (9th). Philadelphia, PA; ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY Lippincott Williams & Wilkins.

Lymphatic Drainage

- Rich mucosal and submucosal lymphatic system which may extend long distances (reason why proximal/distal margins used for radiation planning have traditionally been a minimum of 5 cm)
- Submucosal plexus drains into internal jugular, peritracheal, hilar, subcarinal, periesophageal, periaortic, and pericardial lesser curvature lymph nodes
- Left gastric and celiac nodes for lower third lesions

²Minsky, Bruce D., MD,Goodman, Karyn, MD, MS,Warren, Robert, MD - Leibel and Phillips ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY Textbook of Radiation Oncology, 772-787.

Histology

- Squamous cell carcinomas
 - Majority of cases throughout the world
 - 40% of esophageal cancer in the US
 - 70% in the proximal and middle third
- Adenocarcinoma
 - Frequently arise in the context of Barrett's esophagus
 - Mainly occur in the distal third of the esophagus
 - Rate of adenocarcinoma rising in US (obesity & GERD)
- No significant survival differences have been noted between various histologies

Clinical Presentation

- Dysphagia
 - Most common
 - Initially to solids, then progressing to liquids
 - Large impact on QOL
- Odynophagia
- Weight loss (Anorexia)
- Pain
- Cough/Hoarseness (Recurrent laryngeal nerve)
- Vomiting

²Minsky, Bruce D., MD,Goodman, Karyn, MD, MS,Warren, Robert, MD - Leibel and Phillips ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY Textbook of Radiation Oncology, 772-787.

Diagnosis/Work-Up

- Upper endoscopy allows for biopsy and diagnosis
- Bronchoscopy in patients with tumors above the level of the carina
- Barium esophagram (optional) can identify a tracheoesophageal fistula
- CT chest and abdomen can identify extension beyond the esophageal wall, enlarged lymph nodes, and visceral metastases
- For cervical primaries, a neck CT should be performed to evaluate for cervical lymph node involvement
- Endoscopic ultrasound highly accurate in determining depth of invasion as well as lymph node involvement
- FDG-PET scan for staging and response to pre-operative treatment

²Minsky, Bruce D., MD,Goodman, Karyn, MD, MS,Warren, Robert, MD - Leibel and Phillips ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY Textbook of Radiation Oncology, 772-787.

TNM Staging, AJCC 7th Edition

Primary Tumor

ТХ	Primary tumor cannot be assessed
Т0	No evidence of primary tumor
Tis	High-grade dysplasia
T1	Tumor invades lamina propria, muscularis mucosae, or submucosa
T1a	Tumor invades lamina propria or muscularis mucosae
T1b	Tumor invades submucosa
T2	Tumor invades muscularis propria
Т3	Tumor invades adventitia
Τ4	Tumor invades adjacent structures
T4a	Resectable tumor invading pleura, pericardium, or diaphragm
T4b	Unresectable tumor invading other adjacent structures, such as aorta, vertebral body, trachea

Regional Lymph NodesNxRegional nodes not assessedN0No regional lymph node metastasisN1Metastasis in 1-2 regional lymph
nodes*N2Metastasis in 3-6 regional lymph
nodes*N3Metastasis in 7 or more regional lymph
nodes*

Distant Metastasis

MX	Distant metastasis cannot be assessed
MO	No distant metastasis
M1	Distant metastasis

*Regional lymph nodes extend from cervical nodes to celiac nodes.

Group Staging, AJCC 7th Edition

Adenocarcinoma		Squamous Cell Carcinoma		
Stage 0	Tis, N0, M0, grade 1 or X	Stage 0	Tis, N0, M0, grade 1 or X, any location	
Stage IA	T1, N0, M0, grade 1-2 or X	Stage IA T1, N0, M0, grade 1 or X, any location		
Stage IB	T1, N0, M0, grade 3	Stage IB	T1, N0, M0, grade 2 or 3, any location	
	T2, N0, M0, grade 1-2 or X		T2-3, N0, M0, grade 1 or X, lower esophagus or X	
Stage IIA	T2, N0, M0, grade 3	Stage IIA T2-3, N0, M0, grade 1 or X, upper and middle		
Stage IIB	T3, N0, M0, any grade		esophagus	
	T1-2, N1, M0, any grade		T2-3, N0, M0, grade 2 or 3, lower esophagus or X	
Stage IIIA	T1-2, N2, M0, any grade	Stage IIB	T2-3, N0, M0, grade 2 or 3, upper and middle esophagus	
	T3, N1, M0, any grade		T1-2, N1, M0, any grade, any location	
	T4a, N0, M0, any grade	Stage IIIA	T1-2, N2, M0, any grade, any location	
Stage IIIB	T3, N2, M0, any grade		T3, N1, M0, any grade, any location	
Stage IIIC	T4a, N1-2, M0, any grade		T4a, N0, M0, any grade, any location	
	T4b, any N, M0, any grade	Stage IIIB	T3, N2, M0, any grade, any location	
	Any T, N3, M0, any grade	Stage IIIC	T4a, N1-2, M0, any grade, any location	
Stage IV	Any T, any N, M1, any grade		T4b, any N, M0, any grade, any location	
			Any T, N3, M0, any grade, any location	
		Stage IV	Any T, any N, M1, any grade, any location	

ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

RN

Treatment: T1 Disease (Localized to the Mucosa)

- Little or no risk of lymph node metastases
- T1a (lamina propria or muscularis mucosa)
 - Endoscopic mucosal resection followed by ablation (preferred)
 - Esophagectomy
- T1b (Invades submucosa)
 Esophagectomy

⁵NCCN. Esophageal and Esophagogastric Junction Cancers (Version 1.2014)

Treatment: Locally Advanced Disease (Resectable)

- T1bN+, T2-T4aN0-N+
 - Trimodality therapy with neoadjuvant chemoradiotherapy (CRT) followed by surgical resection
- RT dose 41.4 50.4 Gy in 1.8 Gy daily fractions
 - No utility in dose escalation
 - RTOG 94-05 (Minsky et al) 50.4 v. 64.8 Gy (w/ cis/5-FU)
 - Closed after interim analysis showed no probability of superiority in the high-dose arm
- Multiagent chemotherapy with cisplatin and 5-FU or paclitaxel and carboplatin typically used

CROSS Trial

- Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer
- 366 patients w/ T1N1 or T2-3N0 GE junction or esophageal cancer
- Randomized
 - Preoperative CRT (41.4 Gy & Carboplatin/Paclitaxel) followed surgery
 - Surgery alone

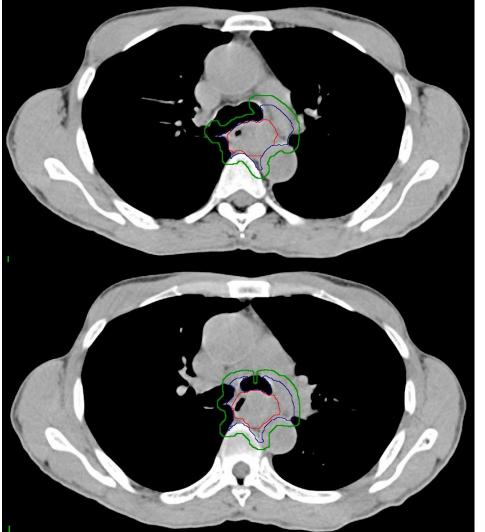
CROSS Trial Results

- R0 resection
 - 92% in CRT v. 69% in surgery arm (p<0.001)</p>
- pCR (ypT0N0)
 - 29% CRT arm
 - 28% in adenoca v. 49% in SCC (p=0.008)
- +LN in resection specimen
 31% (CRT) v. 75% (p<0.001)
- Median OS

- 49 months (CRT) v. 24 months (p=0.003)

- Overall Survival (5-year)
 - 47% (CRT) v. 34%

Treatment Planning


- CT Simulation
 - IV and/or esophageal contrast may be used to aid in target localization
 - Arms above head to maximize number of beam arrangements
 - Immobilization cradle
 - Consider 4D-CT for GE junction tumors

Target Volumes (RTOG 1010)

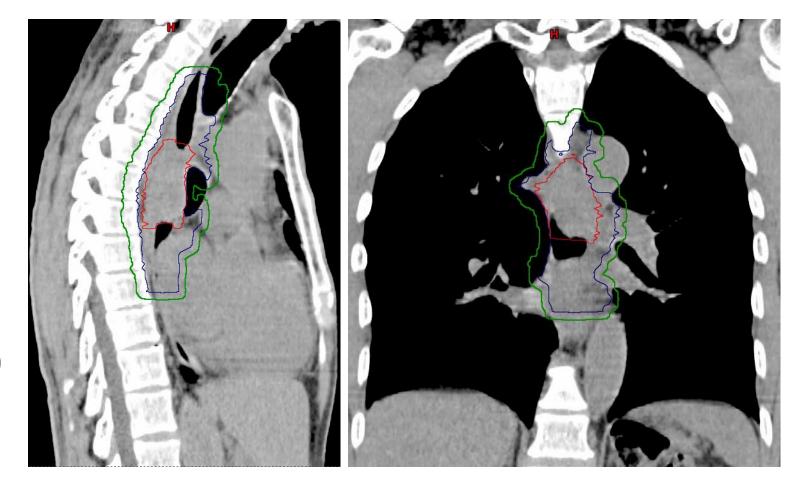
- GTVp: primary tumor in the esophagus
- GTVn: grossly involved regional lymph nodes
- CTV = GTVp with a 4 cm expansion sup/inf along the length of the esophagus and gastric cardia and a 1.0-1.5 cm radial expansion plus the GTVn with a 1.0-1.5 cm expansion in all dimensions
- The celiac axis should be covered for tumors of the distal esophagus or GE junction
- PTV (45Gy) expansion should be 0.5 to 1.0 cm and does not need to be uniform in all dimensions
- Boost PTV (50.4Gy) = GTVp and GTVn with an expansion of 0.5 to 1.0 cm

Target Volumes

GTV

• CTV

 Cropped off anatomic structures in which invasion is not likely (i.e. vertebrae, trachea/bronchi, aorta, lung)

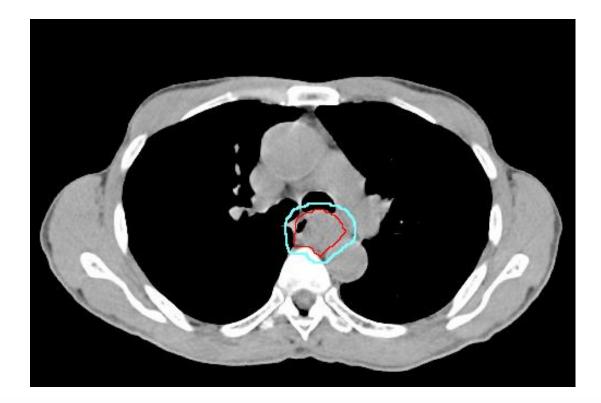

PTV

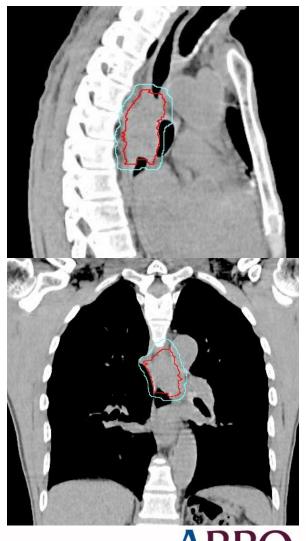
Target Volumes

• GTV

• CTV

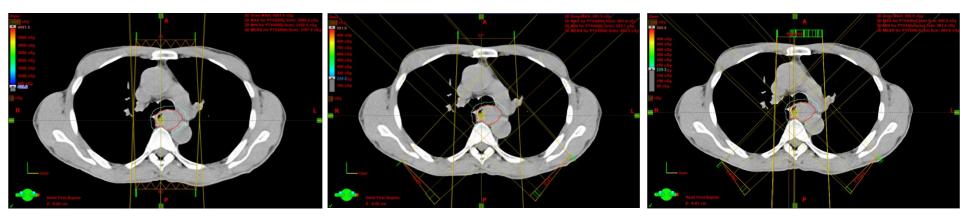
• PTV (45Gy)

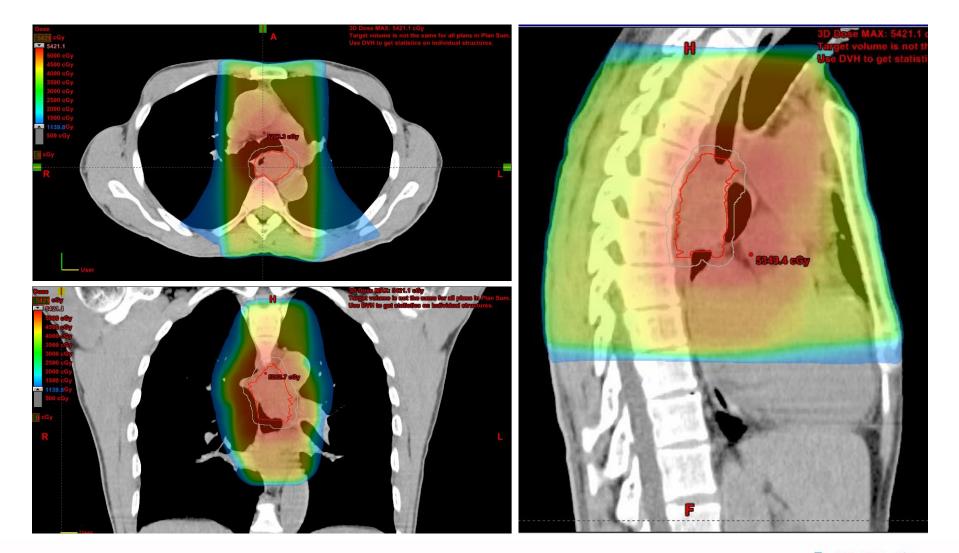



ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

ARRO

Boost Volumes

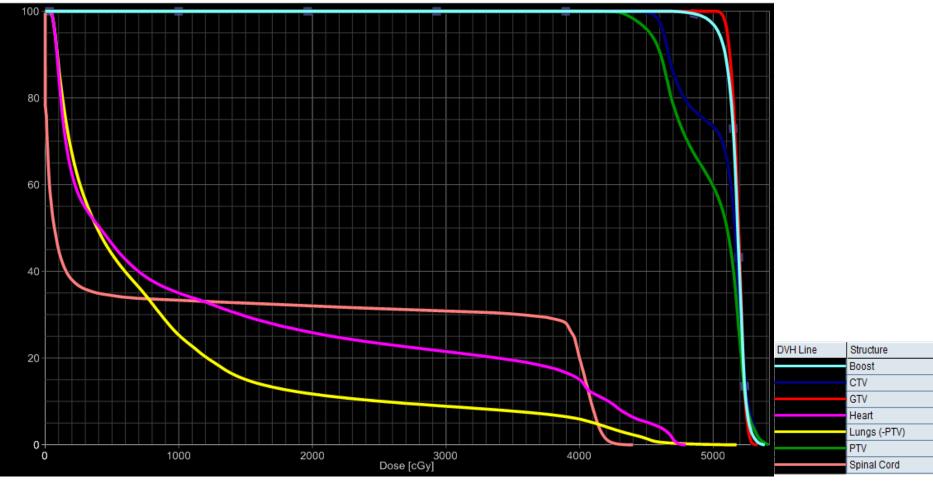

 Boost PTV (50.4Gy) = GTV with an expansion of 0.5 to 1.0 cm



Treatment Plan

- 3D-CRT with daily CBCT
- AP/PA to 36 Gy followed by 3-field boost to 45 Gy
- Additional cone down (Boost PTV) to 50.4 Gy
- Concurrent chemotherapy with carbo/taxol

Plan Sum



Dose Constraints (RTOG 1010)

Structure	Metric	Per Protocol	Acceptable Variation
Lungs (- PTV)	Max Dose (0.03 cc)	≤ 110% Rx Dose	≤ 113% Rx Dose
	Mean Dose	≤ 20 Gy	≤ 21 Gy
	V30	≤ 20%	≤ 25%
	V20	≤ 25%	≤ 30%
	V10	≤ 40%	≤ 50%
	V5	≤ 50%	≤ 55%
Heart (& pericardium)	Max Dose (0.03 cc)	≤ 52 Gy	≤ 54 Gy
	Mean Dose	≤ 32 Gy	≤ 34 Gy
	V40	≤ 50%	≤ 55%
Kidneys	Max Dose (0.03 cc)	≤ 45 Gy	≤ 50 Gy
	V20	≤ 30%	≤ 40%
Spinal Cord	Max Dose (0.03 cc)	≤ 45 Gy	≤ 50 Gy
Liver	Mean Dose	≤ 21 Gy	≤ 25 Gy
	V30	≤ 30%	≤ 40%

Cumulative DVH Including dose to PTV1 and Boost PTV2

ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

ARRO

Ratio of Total Structure Volume [%]

References

- 1. DeVita, V. & Lawrence, T. & Rosenberg, S. (2011). *CANCER* (9th). Philadelphia, PA; Lippincott Williams & Wilkins.
- Minsky, Bruce D., MD,Goodman, Karyn, MD, MS,Warren, Robert, MD Leibel and Phillips Textbook of Radiation Oncology, 772-787 © 2010 Copyright © 2010, 2004, 1998 by Saunders, an imprint of Elsevier Inc.
- 3. American Cancer Society. http://www.cancer.org/cancer/esophaguscancer/detailedguide/esophaguscancer-key-statistics . Accessed 9/22/2014
- 4. AJCC cancer staging handbook, 7th ed. New York: Springer, 2010, published by Springer Science and Business Media LLC
- 5. National Comprehensive Cancer Network. Esophageal and Esophagogastric Junction Cancers (Version 1.2014). http://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf. Accessed 9/22/2014.
- 6. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. Minsky BD et al. J Clin Oncol. 2002 Mar 1;20(5):1167-74.
- Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. Hagen et al.; NEJM 2012;366:2074-84.
- 8. RTOG 1010: A Phase III Trial Evaluating the Addition of Trastuzumab to Trimodality Treatment of Her2-Overexpressing Esophageal Adenocarcinoma. http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?action=openFile&FileID=6331. Accessed 9/22/2014.

