Early Stage Endometrial Cancer

Justin Anderson, MD
Faculty Advisor: Sujay Vora, MD
Mayo Clinic, Phoenix, Arizona, USA
Case: Intro

• HPI:
 – 56 y.o. female, G0P0, with 4 yr hx of irregular menses, thought to be perimenopausal
 – Bleeding accompanied by worsening abdominal pain, led to transvaginal US
 – Pelvic US showed enlarged uterus, large polypoid mass in endometrial cavity, 25.4 mm endometrial stripe (normal < 5 mm)
 – CT A/P showed nodular enhancing masses in endometrium, suspicious for cancer
 – Bx showed high-grade adenocarcinoma
Epidemiology

- Uterine cancer: most common GYN malignancy
 - Cases per year: 65,620
 - Deaths per year: 12,590
- 5 year Relative Survival: 81.2%
- Median Age at Diagnosis: 63

<table>
<thead>
<tr>
<th>Common Types of Cancer</th>
<th>Estimated New Cases 2020</th>
<th>Estimated Deaths 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Breast Cancer (Female)</td>
<td>276,480</td>
<td>42,170</td>
</tr>
<tr>
<td>2. Lung and Bronchus Cancer</td>
<td>228,820</td>
<td>135,720</td>
</tr>
<tr>
<td>3. Prostate Cancer</td>
<td>191,930</td>
<td>33,330</td>
</tr>
<tr>
<td>4. Colorectal Cancer</td>
<td>147,950</td>
<td>53,200</td>
</tr>
<tr>
<td>5. Melanoma of the Skin</td>
<td>100,350</td>
<td>6,850</td>
</tr>
<tr>
<td>6. Bladder Cancer</td>
<td>81,400</td>
<td>17,980</td>
</tr>
<tr>
<td>7. Non-Hodgkin Lymphoma</td>
<td>77,240</td>
<td>19,940</td>
</tr>
<tr>
<td>8. Kidney and Renal Pelvis Cancer</td>
<td>73,750</td>
<td>14,830</td>
</tr>
<tr>
<td>9. Uterine Cancer</td>
<td>65,620</td>
<td>12,590</td>
</tr>
<tr>
<td>10. Leukemia</td>
<td>60,530</td>
<td>23,100</td>
</tr>
</tbody>
</table>

Uterine cancer represents 3.6% of all new cancer cases in the U.S.
Risk Factors

• Phenotypic
 – Continuous unopposed estrogen stimulation
 – Obesity
 – Tamoxifen
 – Cirrhosis
 – Nulliparity
 – Diabetes

• Genotypic (3%)
 – Lynch Syndrome (HNPCC) – most commonly from germline mutations of MMR proteins (MLH1, MSH2, MSH6, or PMS2)
Classification

• Type I
 – Endometrioid
 – Associated with obesity, increased estrogen exposure
 – Better prognosis (overall survival of 85% at 5 years)

• Type II
 – Non-endometrioid
 – Considered high grade
 – Serous, clear cell, grade 3 endometrioid histologies
 – Associated with TP53 mutation
 – Worse prognosis (overall survival of 55% at 5 years)
Workup & Evaluation

• Common presenting symptoms: Postmenopausal vaginal bleeding, menorrhagia, metrorrhagia, abdominal pain, abdominal distension

• History and Physical
 – Physical exam should include inspection of external genitalia, vagina, cervix + pelvic exam, and rectal exam

• Labs: CBC (can consider LFT, renal function, chemistry profile)

• Imaging: Can consider Vaginal Ultrasound, CT c/a/p, Pelvic MRI, and PET

• Biopsy: Endometrial sampling (D&C if EMBx is negative)
Case: Imaging

Pre-op CT of the pelvis: nodular enhancing masses centered in the endometrium with suspected myometrial invasion at > 50% in thickness on the right, concerning for invasive endometrial carcinoma.
Anatomy
Current Staging as of 2009

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tumor confined to the uterus</td>
</tr>
<tr>
<td>IA</td>
<td><50% invasion of the myometrium</td>
</tr>
<tr>
<td>IB</td>
<td>≥50% invasion of the myometrium</td>
</tr>
<tr>
<td>II</td>
<td>Tumor invades the cervical stroma but does not extend beyond the uterus</td>
</tr>
<tr>
<td>III</td>
<td>Local or regional spread of tumor</td>
</tr>
<tr>
<td>IIIA</td>
<td>Serosal or adnexal invasion</td>
</tr>
<tr>
<td>IIIB</td>
<td>Vaginal or parametrial involvement</td>
</tr>
<tr>
<td>IIIC</td>
<td>Metastasis to pelvic or paraaortic lymph nodes</td>
</tr>
<tr>
<td>IIIC1</td>
<td>Pelvic lymph node involvement</td>
</tr>
<tr>
<td>IIIC2</td>
<td>Paraaortic lymph node involvement (with or without pelvic nodes)</td>
</tr>
<tr>
<td>IV</td>
<td>Extension to the pelvic wall, lower one-third of the vagina, or hydronephrosis or nonfunctioning kidney</td>
</tr>
<tr>
<td>IVA</td>
<td>Invasion of bladder or bowel mucosa</td>
</tr>
<tr>
<td>IVB</td>
<td>Distant metastases, including abdominal, or involvement of inguinal lymph nodes</td>
</tr>
</tbody>
</table>

Prior Staging from 1989

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Tumour limited to endometrium</td>
</tr>
<tr>
<td>IB</td>
<td>Invasion to <1/2 myometrium</td>
</tr>
<tr>
<td>IC</td>
<td>Invasion to >1/2 myometrium</td>
</tr>
<tr>
<td>IIA</td>
<td>Endocervical glandular involvement only</td>
</tr>
<tr>
<td>IIB</td>
<td>Cervical stromal invasion</td>
</tr>
<tr>
<td>IIIA</td>
<td>Tumour invades serosa and/or adnexa and/or positive peritoneal cytology</td>
</tr>
<tr>
<td>IIIB</td>
<td>Metastases to pelvic and/or paraaortic lymph nodes</td>
</tr>
<tr>
<td>IVA</td>
<td>Tumour invasion of bladder and/or bowel mucosa</td>
</tr>
<tr>
<td>IVB</td>
<td>Distant metastases including intra-abdominal and/or inguinal lymph nodes</td>
</tr>
</tbody>
</table>
Surgical Management

• TAH/BSO for apparent stage I disease
• Radical Hysterectomy for gross cervical invasion/uncertainty of endocervical vs endometrial
• Omental and peritoneal biopsies for high-risk disease
• Variable recs for surgical LN evaluation
 – SLNB slowly becoming standard of care
Surgical Management

Types of hysterectomy

- Supracervical
- Total
- Radical

- Right parametrium
- Left parametrium
Case: Path Findings

- Patient underwent robot assisted TAH/BSO/SLNB
- Path: endometrioid carcinoma, 6 cm in greatest dimension, FIGO grade 3, 72% myometrial invasion, LVSI -, no cervical stromal involvement, margins negative, 0/3 LN
- Final stage: FIGO stage IB (pT1bN0M0) endometrioid adenocarcinoma

July 20, 2020
Adjuvant Treatment Recs

- Stage IA, grade I or II, endometrioid histology, no LVSI = consider observation
- Stage IA, grade III or stage IB, grade I-II = consider vaginal cuff brachytherapy
- **Stage IB, grade III = pelvic EBRT**
- Stage II = pelvic EBRT + vaginal cuff brachy boost
- Stage III-IV = definitive or adjuvant chemoRT, chemo alone, or RT alone +/- brachy
High-Intermediate Risk

High-Intermediate Risk are stage I endometrial cancer patients who require adjuvant treatment

Common risk factors include:

- **GOG99 HIR**: age ≥ 70 with 1 risk factor, ≥ 50 with 2 risk factors, or any age with 3 risk factors. **Factors are grade 2-3, LVI, or IC**
- **PORTEC-1**: HIR group requires 2/3 factors: **age >60, invasion >50%, and/or grade 3**
- **PORTEC-2**: HIR: **age >60 and IC grade 1-2, or IB grade 3. Stage II A any age, (grade 3 and >1/2 invasion excluded)**
- **GOG249**: HIR defined as: age $\geq 70 + 1$ risk factor, age $\geq 50 + 2$ risk factors, age $\geq 18 + 3$ factors. Risk factors: **grade 2 or 3, LVSI, >50% myometrium**
Support for Adjuvant Recommendations

- Stage IA, grade I or II, endometrioid histology, no LVSI = consider observation
 - PORTEC-1: 715 pts, stage I (excluded stage IC with grade 3 and stage IB with grade 1), randomized to 46 Gy WPRT vs observation
 - 5 yr LRR 4% for WPRT vs 14% for obs
 - 5 yr LRR for HIR Group 4% for WPRT vs 23% for obs
 - 10 yr OS of 66% for WPRT vs 73% for obs (p=0.09)
 - HIR Group requires 2 of following 3: age >60, invasion > 50%, or grade 3
 - Observation after surgery reasonable for low risk patients
 - Confirmed by GOG99
Support for Adjuvant Recommendations

• Stage IA, grade III or stage IB, grade I-II = consider vaginal cuff brachytherapy
 – PORTEC-2: 427 pts, HIR stage I and stage IIA (excluded grade 3 with greater than 50% invasion), randomized to 46 Gy WPRT vs vaginal cuff brachy 7 Gy x 3 HDR or 30 Gy LDR
 – 5 yr vaginal recurrence 1.6% WPRT vs 1.8% VCB
 – 5 yr pelvic recurrence 0.5% vs 3.8%
 – 5 yr OS 85% WPRT vs 80% VCB (NS)
 – Vaginal cuff brachy had lower rates of grade 1&2 GI toxicity
 – *Vaginal cuff brachy non-inferior to WPRT on this study*
Support for Adjuvant Recommendations

- Stage IB, grade III - Stage II = **pelvic EBRT +/- vaginal cuff brachy boost**
 - GOG249: 601 pts, stage I HIR, stage II (included serous or clear cell histology), randomized to WPRT (+ VCB boost for stage II) vs VCB then 3 cycles carbo/paclitaxel
 - **5 yr OS of 87% for WPRT vs 85% for VCB + CHT (NS)**
 - 5 yr RFS of 76% in both arms
 - Higher pelvic and para-aortic node failures with VCB + CHT (4% vs 9%)
 - **Increased acute toxicity with VCB + CHT**
Case: Treatment Recommendations

• Patient’s High-Intermediate risk factors included grade 3 disease and >50% myometrial invasion (See slide 12)

• Recommended adjuvant radiation to 45 Gy in 25 fx with SIB boost to vaginal CTV to 50 Gy in 25 fx (Boost without cervical stromal involvement is controversial)
Radiation Simulation

- Position: Supine with arms up or on chest
 - CT with IV contrast
 - Full and empty bladder scans
 - Consider:
 - pelvic thermoplastic mask and/or Vac-loc device
 - fiducial markers at vaginal apex
 - rectal balloon
 - Vaginal contrast

arm down for photo only, not during scan
Radiation Contouring

• CTV vagina/paravaginal
 – Upper 4.0 cm of vagina or to mid obturator foramen + paravaginal soft tissue lat to vagina

• ITV vagina/paravaginal
 – Merged CTV vagina from full and empty bladder scans, rectal balloon improves immobilization

• CTV lymph nodes
 – 0.7 cm margin around internal (hypogastric/obturator), external and common iliac nodes
 – presacral(1-2 cm anterior to S1-3) always should be included for patients with cervix involvement

• PTV total
 – Additional 0.5-0.7 cm margin from ITV and CTV nodal volume
Contouring: Consensus Guidelines
Case Contours

Green = combined vaginal and LN PTV to 4500 cGy,
Magenta = CTV LN to 4500 cGy, Blue = CTV vaginal/paravaginal to 5000 cGy

July 20, 2020

ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

ARRO
Radiation Technique

- Post-operative RT with IMRT/VMAT
- Prescription
 - 45 Gy in 1.8 Gy/fraction to PTV lymph node
 - SIB boost to 50 Gy in 2 Gy/fraction to PTV vagina
- 50.4 Gy in 1.8 Gy fractions is also an option
Key Dose Constraints

• Per RTOG 0418
 – Small bowel <30% to receive ≥ 40 Gy
 – Rectum <60% to receive ≥ 30 Gy, minor deviation 35% to 50 Gy
 – Bladder <35% to receive ≥ 45 Gy, minor deviation 35% to 50 Gy
 – Femoral heads $\leq 15\%$ to receive ≥ 30 Gy, minor deviation 20% to 30 Gy
Key Dose Constraints

- **QUANTEC**

<table>
<thead>
<tr>
<th>Organ</th>
<th>Volume segmented</th>
<th>Irradiation type (partial organ unless otherwise stated)</th>
<th>Endpoint</th>
<th>Dose (Gy), or dose/volume parameters</th>
<th>Rate (%)</th>
<th>Notes on dose/volume parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectum</td>
<td>Whole organ</td>
<td>3D-CRT</td>
<td>Grade ≥ 2 late rectal toxicity,</td>
<td>V50 <50%</td>
<td><15</td>
<td>Prostate cancer treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 3 late rectal toxicity</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 2 late rectal toxicity,</td>
<td>V60 <35%</td>
<td><15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 3 late rectal toxicity</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 2 late rectal toxicity,</td>
<td>V65 <25%</td>
<td><15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 3 late rectal toxicity</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 2 late rectal toxicity,</td>
<td>V70 <20%</td>
<td><15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 3 late rectal toxicity</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 2 late rectal toxicity,</td>
<td>V75 <15%</td>
<td><15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥ 3 late rectal toxicity</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>Whole organ</td>
<td>3D-CRT</td>
<td>Grade ≥ 3 late RTOG</td>
<td>Dmax <65</td>
<td><6</td>
<td>Bladder cancer treatment,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variations in bladder size/shape/location during RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hamper ability to generate accurate data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade ≥3 late RTOG</td>
<td>V65 ≤50 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V70 ≤35 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V75 ≤25 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V80 ≤15 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small bowel</td>
<td>Individual small bowel loops</td>
<td>3D-CRT</td>
<td>Grade ≥ 3 acute toxicity5</td>
<td>V15 <120 cc</td>
<td><10</td>
<td>Volume based on segmentation of the individual</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>loops of bowel, not the entire potential peritoneal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>space</td>
</tr>
<tr>
<td></td>
<td>Entire potential space within peritoneal cavity</td>
<td>3D-CRT</td>
<td>Grade ≥ 3 acute toxicity5</td>
<td>V45 <195 cc</td>
<td><10</td>
<td>Volume based on the entire potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>space within the peritoneal cavity</td>
</tr>
</tbody>
</table>
Case: Dose Volume Histogram

- PTV Vagina
- PTV LN
- Bladder
- Rectum
- Large Bowel
- Small Bowel
- Right Femur
- Left Femur
Acute & Late Side Effects

- RTOG 1203 (TIME-C): IMRT vs 3D Conformal
 - IMRT led to decrease in following patient reported events:
 - Diarrhea at 5 weeks (33.7% vs 51.9%, p=.01)
 - Fecal Incontinence at 5 weeks (1.1% vs 9.3%, p=.04)
 - Diarrhea at 1 yr (5.8% vs 15.1%, p=0.4)
 - Antidiarrheal medication at 1 yr (4.6% vs 13%, p=.03)
Treatment Side Effects

• Acute:
 – Diarrhea
 – Abdominal pain
 – Fatigue
 – Dysuria
 – Urinary frequency
 – Myelosuppression

• Late:
 – Vaginal stenosis
 – Vaginal dryness
 – Rare incidences of cystitis, proctitis, sacral insufficiency fractures, bowel obstruction, fistula
Follow-up

• Physical Exam every 3-6 months for 2-3 yrs then every 6 months for 5 years then annually
• Imaging as clinically indicated
• Patient education including sexual health and use of dilator and lubricants
 – Dilator use recommendations vary, consider 1-3 x week for 10 minutes, can be less frequent if sexually active
References

4. NCCN: Clinical Practice Guidelines Uterine Neoplasms

References Cont.

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com

July 20, 2020