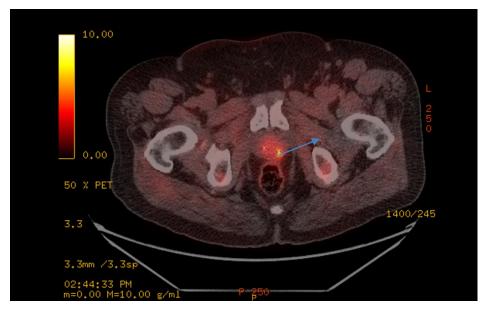
Salvage brachytherapy for locally recurrent prostate cancer

Bhanu Prasad Venkatesulu, MBBS, MD, PGY-2
Faculty advisor: Abhishek Solanki, MD
Loyola University, Chicago and Edward Hines VA hospital

Case presentation

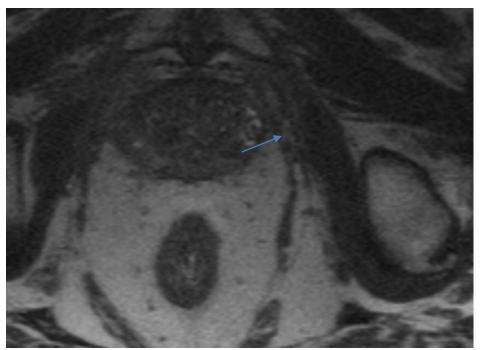
 73-year-old gentleman was noted to have an elevated PSA of 7.2 on surveillance screening in 2014

 TRUS guided biopsy showed adenocarcinoma of the prostate, cT1c, Gleason 3+4, 3/12 cores positive, iPSA 7.2

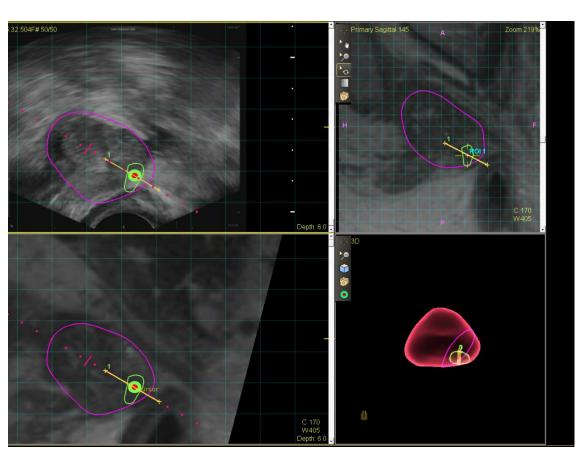

Diagnosed with favorable intermediate risk prostate cancer

 Treated with proton radiation 79.42 cobalt gray equivalents in 44 fractions completed in 12/2014

PSA dynamics


Date	PSA levels ng/ml
4/2014	7.2(pre-treatment PSA)
3/2015	5.3
6/2015	3.2
12/2015	2.1
6/2016	1.95(nadir)
1/2017	2.19
1/2018	2.79
1/2019	4.0(Biochemical recurrence) Phoenix definition of nadir+2
4/2020	4.15

Imaging workup


Fluciclovine PET showing Left mid gland posterolateral uptake, extending into apex suggestive of local recurrence

MRI prostate: T2 with 3D reconstruction shows Discrete, homogeneous low signal intensity focus with broad contact with the capsule PI-RADS score: 4 - High (clinically significant cancer is likely to be present)

MRI fusion biopsy

TRUS with MRI fusion uronav biopsy showing adenocarcinoma of prostate in the left mid,left base and left posterolateral lesion with GS of 4+5 involving 4/12 cores positive

The biopsy involves whole gland with mapping biopsy of the index lesion

Treatment options for local recurrence

1. Continued surveillance

2. Palliative ADT

- 3. Salvage Local Therapy
- ✓ Brachytherapy-HDR,LDR
- ✓ SBRT
- ✓ Cryotherapy
- ✓ High intensity focused Ultrasound
- ✓ Prostatectomy

Why salvage local therapy? why not just ADT

Symptom	Comments
Hot flushes	Very common. Can be mitigated by use of medications such as venlafaxine or gabapentin. Additionally, acupuncture has a potential role in alleviating symptoms.
Osteoporosis	Very common. Estimated 1%–3% fracture risk per year. Men should be given calcium/vitamin D supplements. There is a clear role for osteoclast inhibitors (either zoledronic acid or denosumab) in men with metastatic castration-resistant prostate cancer with bone metastases in preventing skeletal-related events. In men with metastatic castration-sensitive prostate cancer, bisphosphonates have not been shown to be beneficial.
Fatigue	Very common. Seen in most men receiving ADT and independent of anemia or depression. Regular exercise can be beneficial in these patients.
Depression	Common. Seen frequently in men treated with ADT and should be explored at multiple visits. May be amenable to treatment with SSRI (or SNRI if concurrent with hot flushes).
Gynecomastia	Common. Can be a major quality of life issue, although tamoxifen and radiotherapy can be potential treatment options.
Erectile dysfunction	Common. Both erectile dysfunction and decreased libido are seen in men receiving ADT and remain major quality-of-life issues. Referral to sexual health counseling may be of benefit.
Metabolic syndrome	Common. Weight gain is commonly seen within 1 year of starting ADT. Additionally, insulin resistance, dyslipidemia, and sarcopenic obesity are reported.
Dementia	Controversial. Multiple studies have explored this issue, with mixed and conflicting findings. This remains an active area of clinical research.
Thromboembolic disease	Controversial. Several meta-analyses have shown an association between VTE and ongoing ADT use, though many have not controlled for ongoing tobacco use and acute hospitalizations, both of which increase thrombotic risk.
Cardiovascular disease	Controversial. Several meta-analyses have found conflicting results on risk of cardiovascular disease from ADT. Primary and secondary prevention for cardiovascular disease should be pursued.
SNRI = serotonin and norepineph	rine reuptake inhibitor; SSRI = selective serotonin reuptake inhibitor; VTE = venous thromboembolism.

- ✓ Patient elected to proceed with salvage brachytherapy
- ✓ At our institution we have a phase 2 trial of Focal salvage HDR brachytherapy for locally recurrent prostate cancer in patients treated with prior radiotherapy (F-Sharp trial)
- ✓ Why focal therapy: Can potentially reduce urinary and sexual toxicity and target
 the areas of local recurrence alone

- ✓ Day care procedure: Patient has perineal needles placed under TRUS guidance under general anesthesia.(30-45min)
- ✓ CT simulation and MRI prostate done. The diagnostic PET and MRI are also fused.
- ✓ The biopsy proven area of local recurrence with correlative imaging findings are contoured to form GTV. GTV+5mm margin forms the CTV.
- ✓ CTV is prescribed a dose of 13.5Gy with GTV run hot with dose ranging from 15-17Gy.
- ✓ Second implant done 1-2 weeks apart

Planning dose constraints

Priority will be given to the normal tissue dose constraints over the prescription dose.

Priority will be given to GTV coverage first and then CTV coverage.

GTV (V100 ≥ 95%)

GTV (D90 ≥ 100%)

CTV (V100 ≥ 95%)

CTV (D90 ≥ 100%)

The normal tissue dose constraints will be as follows:

Bladder:D 0.1 cc ≤ 12.82 Gy , D 1cc ≤ 10.13 Gy , V10.13 Gy ≤ 1 cc

Rectum:D 1 cc \leq 10.13 Gy Gy ,V10.13 Gy \leq 1 cc

Urethra:Max point dose ≤ 16.2 Gy, D 1 cc ≤ 14.85 Gy

Figure 1 shows the CT contours with inner red line is the GTV and the outer red line is the CTV

Figure 3 T2 MRI contours with inner red line is the GTV and the outer red line is the CTV

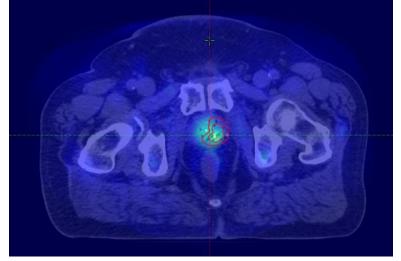


Figure 2 corresponding PET contours with inner red line is the GTV and the outer red line is the CTV

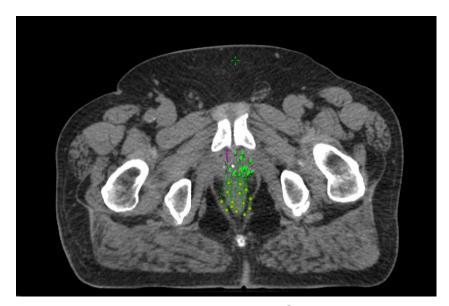


Figure 4 catheter reconstruction on CT

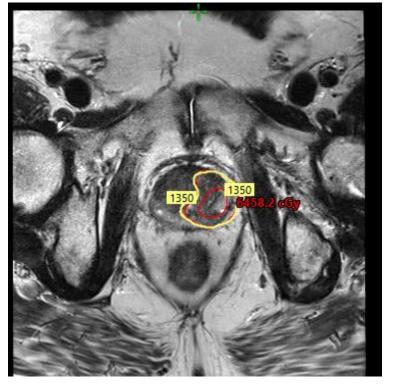
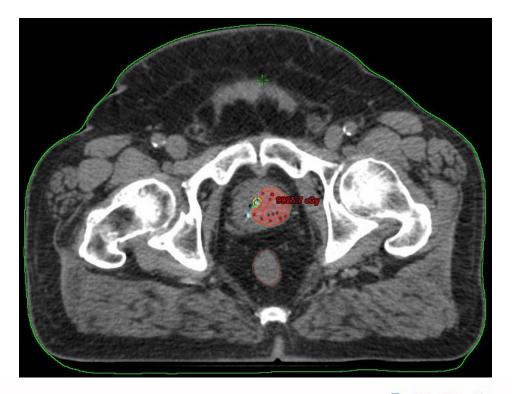
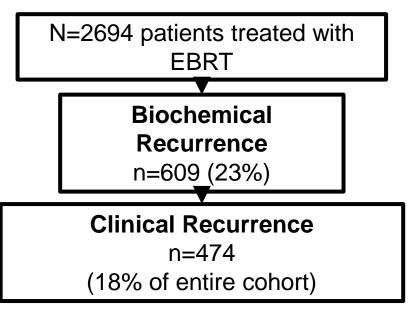



Figure 1 shows the planning MRI images of the 100% isodose line(yellow) covering the CTV(outer red line)

Figure 2 shows the planning CT images showing dose color wash for the prescription dose(13.5Gy)


Post-treatment follow up

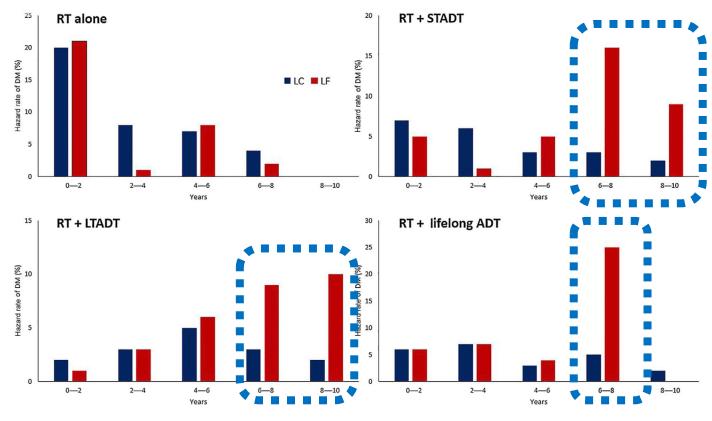
- ✓ Patient is 5 months post treatment with follow up PSA showing downtrend from PSA 4.15 to PSA 2.07
- ✓ Has mild dysuria and urgency. He is using 0.4 mg tamsulosin.
- ✓ Has ED pre-RT baseline and uses Viagra with success

Discussion

Loco-regional Accounts for 50% of Clinical Recurrences after Definitive EBRT

Patterns of 1 st Clinical Failure								
	Low Intermed High Overall							
	(n=34)	(n=173)	(n=267)	(n=474)				
Local	25 (74%)	117 (68%)	120 (45%)	262 (55%)				
Pelvic Nodes	0 (0%)	33 (19%)	68 (25%)	101 (21%)				
Abdominal Nodes	2 (6%)	16 (9%)	25 (9%)	43 (9%)				
Thoracic Nodes	0 (0%)	7 (4%)	3 (1%)	10 (2%)				
Bones	8 (24%)	43 (25%)	108 (40%)	159 (34%)				
Viscera	0 (0%)	1 (<1%)	8 (3%)	9 (2%)				

Zumsteg, J Urol, 2015


Slide courtesy of Solanki, pASTRO, 2020

Local recurrence may lead to subsequent Metastatic Disease

Individual Patient-level Meta-analysis of 6 trials:

Trial
RTOG 8531
RTOG 8610
RTOG 9202
EORTC 22863
EORTC 22961
EORTC 22991

Kishan, Eur Urol, 2019

Slide courtesy of Solanki, pASTRO, 2020

A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER)

Table 1 - Summary of patient and treatment characteristics for local salvage modalities

	Age (yr)	Whole-gland salvage (%)	Biopsy-proven recurrence (%)	Presalvage PSA (ng/mL)	Perisalvage ADT use (%)	Interval from initial treatment to recurrence or salvage (mo)	Median follow-up (mo)	Number of studies (n)	Number of patients (n)
RP	65	100	99	6.0	16	50	47	52	2686
Cryotherapy	66	93	99	5.8	35	63	32	32	5153
HIFU	69	86	100	5.0	18	63	33	20	1783
SBRT	72	61	81	4.0	37	89	26	8	261
HDR	71	85	94	4.5	43	61	40	16	586
LDR	69	92	95	5.5	37	67	52	32	853

ADT = androgen deprivation therapy; HDR = high-dose-rate brachytherapy; HIFU = high-intensity focused ultrasound; LDR = low-dose-rate brachytherapy; PSA = prostate-specific antigen; RP = radical prostatectomy; SBRT = stereotactic body radiotherapy.

Majority of studies do whole gland salvage, increasing trend with SBRT and HDR to focal gland therapy

Table 3 - Covariate-adjusted meta-regression comparing efficacy and toxicity between salvage modalities and radical prostatectomy

	2-yr RFS	5-yr RFS	Severe GU toxicity	Severe GI toxicit
Radical prostatectomy				
Adjusted percent ^a (95% CI)	72% (66-78%)	53% (46%-59%)	21% (16%-26%)	1.5% (0.4%-3.2%)
Odds ratio (95% CI)	1.0	1.0	NA	NA
p value	Reference	Reference	Reference	Reference
R ² (%)	0.0	0.0	0.0	0.0
Cryotherapy				
Adjusted percent ^a (95% CI)	66% (59-72%)	57% (49-65%)	15% (8-23%)	0.9% (0.3-1.8%)
Odds ratio (95% CI)	0.74 (0.49-1.12)	1.20 (0.80-1.79)	NA	NA
p value	0.2	0.4	0.2	0.5
R ² (%)	25	0.0	8.2	27
HIFU				
Adjusted percent ^a (95% CI)	52% (45%-59%)	46% (37%-55%)	23% (17%-30%)	0.8% (0.1%-2.1%)
Odds ratio (95% CI)	0.42 (0.28-0.64)	0.76 (0.48-1.21)	NA	NA
p value	<0.001	0.2	0.5	0.4
R ² (%)	0.0	41	15	22
SBRT				
Adjusted percent ^a (95% CI)	58% (46-69%)	56% (37-73%)	5.6% (1.4-12%)	0.0% (0.0-1.2%)
Odds ratio (95% CI)	0.52 (0.30-0.93)	1.13 (0.50-2.58)	NA	NA
p value	0.03	0.8	< 0.001	0.07
R ² (%)	55	4.2	0.00	0.0
HDR				
Adjusted percent ^a (95% CI)	77% (69-83%)	58% (52-64%)	9.6% (6.0-13.9%)	0.0% (0.0-0.3%)
Odds ratio (95% CI)	1.26 (0.77-2.09)	1.25 (0.88-1.78)	NA	NA
p value	0.4	0.2	0.002	0.003
R ² (%)	0.0	91	0.0	0.0
LDR				
Adjusted percenta (95% CI)	79% (72-85%)	53% (43-63%)	9.1% (5.2-14%)	2.1% (0.6-4.0%)
Odds ratio (95% CI)	1.49 (0.89-2.50)	1.02 (0.63-1.67)	- 1	- ` `
p value	0.13	0.9	0.001	0.6
R ² (%)	4.3	5.2	12	20%

CI = confidence interval; GI = gastrointestinal; GU = genitourinary; HDR = high-dose-rate brachytherapy; HIFU = high-intensity focused ultrasound; LDR = low-dose-rate brachytherapy; NA = not available; RFS = recurrence-free survival; SBRT = stereotactic body radiotherapy.

Significant p-values after Bonferroni correction appear in bold.

SBRT and HDR seem to have the best outcomes with acceptable toxicity HDR studies were mainly whole gland compared to our patient where focal therapy was done

^a Back-transformed regression coefficients for ease of interpretation.

Outcomes with Salvage LDR and HDR

	•						
Study	Design	N	Local Therapy	Dose/Fx	Median f/u (months)	Biochemical Control	Distant Metastasis
Mount Sinai Burri, IJROBP, 2010	Retrospectiv	37	LDR	110 Gy Pd-103	86	5 y FFBF 65%	5 y MFS 94%
	e						
Princeton	Retrospectiv	22	100/1100	Med. 100 Gy Pd-103	C4	F DCA DEC 700/	F NATC 020/
Baumann, Brachytherapy,	e	33	LDR/HDR	Med. 30 Gy in 6 fx	61	5 y PSA-RFS 79%	5 y MFS 93%
2017	_			<u> </u>			
Spanish Multi-institutional	Retrospectiv	119	LDR/HDR	Mean 145 Gy	52	5 y PSA-RFS 71%	~80-85% without
Lopez, Radiother Oncol, 2019	е			32 Gy in 2-4 fx			DM
MSKCC retrospective	Retrospectiv			Mostly 125 Gy Pd-			
Kollmeier, Brachytherapy,	-	98	LDR/HDR	103	31	5 y PSA-RFS ~55%	3 y MFS 79%
2017	е			Mostly 32 Gy in 4 fx			
UCSF	Retrospectiv	420	1100	32 Gy in 4 fx	C4	F LNED 420/	N
Boreta, pASTRO, 2019	e	139	HDR	36 Gy in 6 fx	61	5 y bNED 42%	Not reported
Netherlands	Retrospectiv	F.0	1100	10.0 1.5	24	2.5 L.DEC 540/	2.5. DN456.750/
Juliet Van Son, IJROBP, 2020	e	50	HDR	19 Gy x 1 fx	31	2.5 y bPFS: 51%	2.5 y DMFS 75%
Leeds	Retrospectiv	43	LIDB	10 Cv v 1 fv	20	2 hDEC 710/	2 · · FFDM > 000/
Slevin, CTRO, 2020	е	43	HDR	19 Gy x 1 fx	26	2 y bPFS 71%	2 y FFDM >90%
Mt. Vernon	Retrospectiv	Γ0	LIDB	10 Cv v 1 fv	21	2 · / PDEC C30/	2 · / FFDM > 000/
Chitmanee, Clin Oncol, 2020	e	50	HDR	19 Gy x 1 fx	21	2 y bPFS 63%	2 y FFDM >90%
MSKCC phase II	Dracocativa	42	HDR	22 Cy in 4 fy	36	E V DCA DEC 600/	F NAFC 01 F0/
Yamada, Brachytherapy, 2014	Prospective	42	пик	32 Gy in 4 fx	30	5 y PSA-RFS 69%	5 y MFS 81.5%
Sunnybrook	Dunamanti	1.5	LIDB	27 Cu in 2 fu	26	2 DCA DEC (40/	2 FFDM 1000/
Murgic, IJROBP, 2018	Prospective	15	HDR	27 Gy in 2 fx	36	3 y PSA-RFS 61%	3 y FFDM 100%
RTOG 0526	Dunamanti :	100	LDD	140 Gy I-125		- ACTDO 2020	
Crook, pASTRO, 2020	Prospective		LDR	120 Gy Pd-103	pASTRO 2020		

Most series suggest 5-y PSA-RFS: ~50-60% and 5-y MFS: ~75-90%

Slide courtesy of Solanki, pASTRO, 2020

Emerging Data for Salvage SBRT

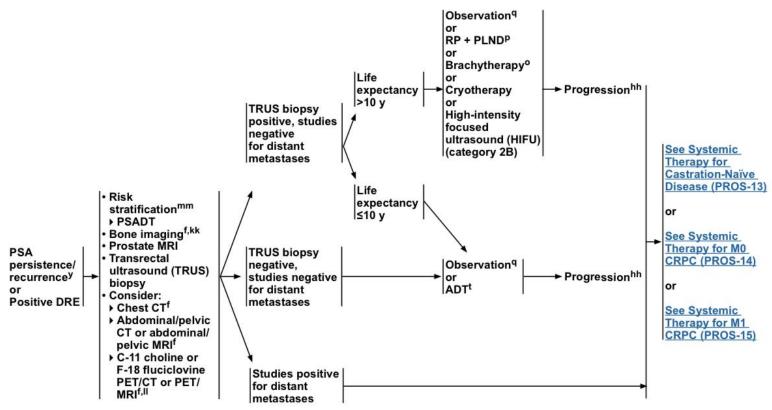
Study	Design	N	Local therapy	Dose/Fx	Median f/u (months)	Biochemical Control	Distant Metastasis
European Institute of Oncology Jereczek-Fossa, BJR, 2018	Retrospectiv e	64	SBRT	Median 30 Gy/5	26	2 y bRFS 40%	2 y FFDM ~81%
Genesis Health Partners Fuller, IJROBP, 2019	Retrospectiv e	50	SBRT	34 Gy/5	44	5 y bPFS 50%	5 y FFDM ~90%
GETUG Multi-institutional Pasquier, IJROBP, 2019	Retrospectiv e	100	SBRT	Median 36 Gy/6	29	3 y bPFS 50%	3 y FFDM 93%
Humanitas University D'Agostino, IJROBP, 2019	Retrospectiv e	33	SBRT	Median 25 Gy/5	33	2 y bRFS 42%	Not Reported
Northern Sydney Cancer Center Bergamin, IJROBP, 2020	Prospective	25	SBRT	36-38 Gy/6	25	2 y FFBF 80%	Not Reported

- Series suggest salvage SBRT has similar efficacy to salvage brachytherapy
- GETUG-AFU 31 (NCT03438552): Ongoing phase I/II trial of salvage SBRT powered for toxicity

Slide courtesy of Solanki, pASTRO, 2020
ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY REPORTS OF THE PROPERTY OF THE PROPERTY

Unanswered Questions Remain

Patient selection


Comprehensive Cancer
Network®

NCCN Guidelines Version 2.2021

Prostate Cancer

NCCN Guidelines Index
Table of Contents
Discussion

RADIATION THERAPY RECURRENCE

Initial Risk Group and Type of RT?

Study	Local Therapy	Initial Risk Group	Type of Initial RT
RTOG 0526	LDR	Low or Intermediate Risk EBRT	
Spanish	LDR/	All risk Groups	EDDT LDD
Multi-institutional	HDR	(~1/3 High Risk; 20% GG 4-5)	EBRT, LDR
MSKCC	LDR/	All Rick Groups	ERRT Brachythorany
Retrospective	HDR	All Risk Groups	EBRT, Brachytherapy
MSKCC	HDR	All risk Groups	EBRT
prospective	пик	All risk Groups	EDNI
UCSF	HDR	All Risk Groups	EBRT, Protons, SBRT, HDR, LDR
Genesis Health Partners	SBRT	Not reported	EBRT, Brachytherapy, SBRT
GETUG	SBRT	All Risk Groups	ERRT : / RT
Multi-institutional	SBKI	(42% High Risk)	EBRT +/- BT
Netherlands	HDR	All risk Groups (26% cT3a, 12% GG 4-5)	EBRT, LDR
Mount Sinai	LDR	All Risk Groups (24% high risk)	EBRT, LDR
Princeton	LDR/	All Risk Groups	EDDT
Filliceton	HDR	(55% High risk, 20% T3, 20% GG 4-5)	EBRT
Northern Sydney	SBRT	All Risk Groups	EBRT, EBRT+HDR, LDR
Cancer Center	SDVI	(44% High risk)	LUNI, EDNITHUN, LUN

- Most series include High Risk patients (~25-40%)
- Mostly EBRT, but series also include prior brachytherapy and SBRT

Slide courtesy of Solanki, pASTRO, 2020
ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

Recurrent Disease Characteristics?

Study	Recurrent Disease PSA	Recurrent T-classification	Time from prior RT	
RTOG 0526	PSA < 10	No extraprostatic disease	Minimum 2.5 y	
Spanish	No cutoff	No extraprostatic disease	No minimum	
Multi-institutional	(Max 16.7, median 4)	No extraprostatic disease	NO IIIIIIIIIIIII	
MSKCC	No cutoff	229/ MDI ECE 119/ MDI SVI	Minimum 1 v	
Retrospective	(Max 59, median 3.7)	33% MRI ECE, 11% MRI SVI	Minimum 1 y	
MSKCC	PSA ≤10	No Extraprostatic disease	Not roported	
Prospective	P3A 210	No Extraprostatic disease	Not reported	
UCSF	No cutoff	cT3a: 19%, cT3b: 26%	No minimum	
OCSF	(Median 4.6)	C13a. 13/6, C13b. 20/6		
Genesis	No cutoff	Up to T3b	Minimum 2 y	
Health Partners	(Max 48, median 4)	Op to 135		
GETUG	No cutoff	No ECE or SVI	Minimum 2 y	
Multi-institutional	(Max 38, median 4.3)	NO LCL OI 3VI	Willimian 2 y	
Netherlands	No cutoff	6% MRI ECE, 28% MRI SVI	Minimum 2 y	
Netherlands	(Max 39 , median 17)	0% WIKI LCL, 28% WIKI 3VI	Willimian 2 y	
Mount Sinai	No cutoff	Not reported	Not reported	
Wibuiit Siliai	(75% < 10)	Not reported	Not reported	
Princeton	No cutoff	No ECE or SVI	Minimum 1.5 y	
Filliceton	(88% < 10)	NO LCE OF SVI	iviiiiiiiuiii 1.5 y	
Northern Sydney	PSA < 15	MRI ≤T2a	Minimum 4 y	
Cancer Center	P3A < 13	IVINI 212d	Willimum 4 y	

- Most had no strict cutoff
 - Mostly PSAs < 10
- ECE or SVI included in several series
- Most ~≥2 years from prior RT in most series

Prognostic Features for Disease Control and Toxicity

Study	Local Therapy	Poor Prognostic Features for Disease Control	Prognostic Features for Toxicity
RTOG 0526	LDR	pASTRO 2020	Higher V100
Spanish Multi-institutional	LDR & HDR	Higher nadir PSA after salvage Disease-free interval <30 months	None reported
MSKCC Retrospective	LDR & HDR	Salvage PSADT <12 months	None reported
MSKCC prospective	HDR	None	Baseline urinary function predicted for G2 but not G3
UCSF	HDR	T3b Disease-free interval <4 years >35% cores involved & GG 4-5	None reported
Genesis Health Partners	SBRT	Salvage PSA > 6.92 ng/ml	Modality – prior brachy or SBRT had higher ≥G3+ toxicity
GETUG Multi-institutional	SBRT	Higher initial risk group Shorter disease-free interval Lower BED of salvage SBRT	BED associated with ≥G1 toxicity
Netherlands	HDR	Higher PSA (≥10), PSADT ≤9 MRI ≥T3 bigger size of CTV	None reported
Mount Sinai	LDR	Salvage PSA > 6	PLND prior to salvage associated w/ ≥G2 toxicity
Princeton	LDR & HDR	Older age at diagnosis & Older age at salvage Higher PSA nadir after initial RT Higher presalvage PSA	None reported

- Higher PSA nadir and presalvage level, shorter PSADT, shorter disease-free interval, and ECE/SVI lead to worse prognosis
- No consistent predictors of toxicity

Unanswered Questions Remain

- Patient selection
 - NCCN
 - Most published series are relatively inclusive
- Prognostic features for disease control and toxicity
- Role of short course of hormonal therapy in the setting of salvage radiotherapy

Role of focal therapy

Summary

 Locally radiorecurrent prostate cancer is a common and clinically meaningful disease state

 Local therapy using brachytherapy or SBRT can salvage ~60% of patients with local radiorecurrence with an ~5-15% risk of severe toxicity

 Unanswered questions remain regarding patient selection and optimal treatment

References

- https://clinicaltrials.gov/ct2/show/NCT03312972
- https://www.sciencedirect.com/science/article/abs/pii/S0302283820308745A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER)
- Zumsteg, Z. S. et al. The natural history and predictors of outcome following biochemical relapse in the dose escalation era for prostate cancer patients undergoing definitive external beam radiotherapy. Eur. Urol. 67, 1009–1016 (2015)
- Zhou, P. et al. Predictors of prostate cancer-specific mortality after radical prostatectomy or radiation therapy. J Clin Oncol 23, 6992–6998 (2005).
- Hayman, J. et al. Local failure is a dominant mode of recurrence in locally advanced and clinical node positive prostate cancer patients treated with combined pelvic IMRT and androgen deprivation therapy. Urol Oncol 37, 289.e19-289.e26 (2019)
- Coen, J. J., Zietman, A. L., Thakral, H. & Shipley, W. U. Radical radiation for localized prostate cancer: local persistence of disease results in a late wave of metastases. J Clin Oncol 20, 3199–3205 (2002)
- Zagars, G. K., von Eschenbach, A. C., Ayala, A. G., Schultheiss, T. E. & Sherman, N. E. The influence of local control on metastatic dissemination of prostate cancer treated by external beam megavoltage radiation therapy. Cancer 68, 2370–2377 (1991)
- Kishan, A. U. et al. Local Failure and Survival After Definitive Radiotherapy for Aggressive Prostate Cancer: An Individual Patient-level Meta-analysis of Six Randomized Trials. Eur Urol 77, 201–208 (2020).

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com

