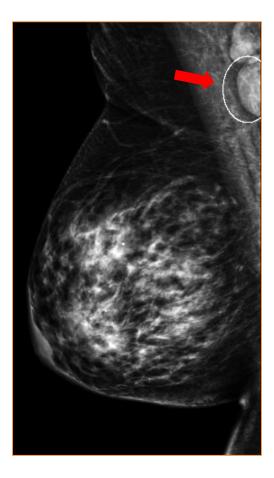
ARRO*Case*

Post-Mastectomy Radiation Therapy (PMRT)

Michael Zhang, MD/PhD

Faculty Advisor: Catherine Park, MD

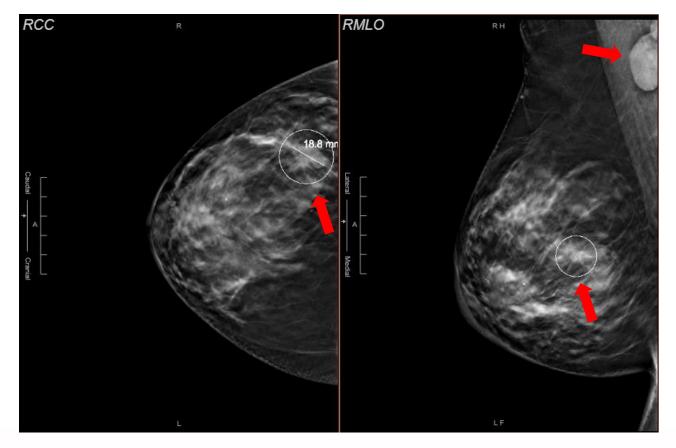
University of California, San Francisco San Francisco, CA

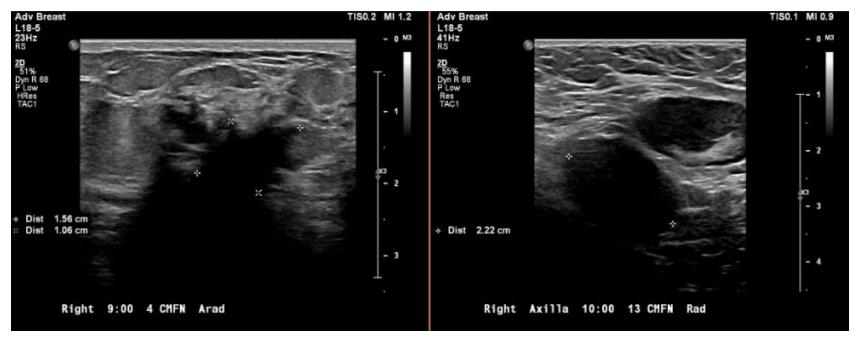


Learning Objectives

- Discuss a case of locally advanced right sided breast cancer indicated for PMRT
- Estimate the risk of recurrence without adjuvant radiation after neoadjuvant chemotherapy
- Discuss the indications and rationale for PMRT
- Review the rationale for inclusion of axillary, supraclavicular, and internal mammary fields
- Discuss the design and evaluation of 3D radiation fields for PMRT

Case: Presentation


- 72 year old woman underwent a routine bilateral screening mammogram
 - Findings: Heterogeneously dense breasts. Prominent lymph node in the right axilla at edge of image.
- PMH: diabetes (A1c 6.9, diet-controlled), multiple sclerosis, aortic stenosis, uterine fibroids, HLD
- PSH: L ovary removal for cystadenoma, myomectomy, lap chole, trigger finger release
- FH: Breast cancer (mother at 62y), Prostate cancer (maternal cousin), Diabetes (brother)
- Gyn: G0, menarche 12y, menopause 50s, no OCPs, Provera (2yrs for fibroids)
- Mammograms: Annual since age 54, no prior bx
- Genetics: BRCA 1/2 negative for germline mutations


Case: Physical Exam

- General: Alert, well-appearing, NAD
- HEENT: Sclerae anicteric, oropharynx clear
- Lymph nodes: Mobile R axillary lymph nodes x 2 (2 cm and 1 cm). No L axillary, cervical, or supraclavicular adenopathy
- Breasts: R breast with 6 x 6 cm mobile mass in R central outer quadrant; additional 1 cm nodule at mammary edge at 9:00. L breast without masses or lesions
- Chest: No increased WOB on room air. Lungs clear to auscultation bilaterally.
- Heart: Normal rate and rhythm
- Abdomen: Non-distended, non-tender
- Neurologic: AOx3, grossly non-focal
- Musculoskeletal: No spinal tenderness. No LE edema
- Skin: No rashes

- Diagnostic bilateral mammogram with Tomosynthesis
 - Architectural distortion with associated 19 mm irregular mass in the outer central right breast, posterior depth. Enlarged lymph nodes in the right axilla.
 - Left breast benign

- Right breast ultrasound
 - Outer central right breast: Vague 16 x 11 x 13 mm hypoechoic, irregularly shaped, not parallel-oriented solid mass with indistinct margins and posterior shadowing at 9:00, 4 cm from nipple (CFN).
 - Right axilla: multiple enlarged, morphologically abnormal appearing lymph nodes. The largest 22 x 18 x 21 mm at 10:00, 13 CFN

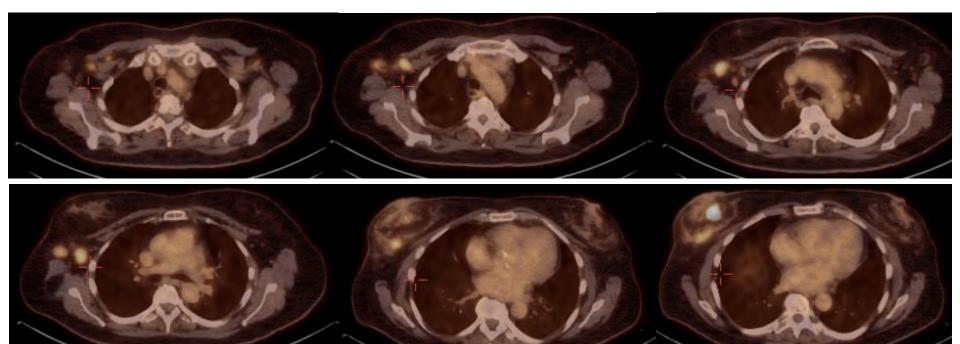
- Ultrasound-guided biopsies
 - Right breast mass (core needle), 9:00, 4 CFN
 - Invasive ductal carcinoma, grade 3, extensive LVI
 - ER+(>99%)PR+(60%)Her2-(IHC 2, FISH neg)
 - Ki-67 30%
 - Right axillary lymph node (FNA)
 - Metastatic adenocarcinoma
 - Biopsy clips placed

Work-up for locally advanced breast cancer

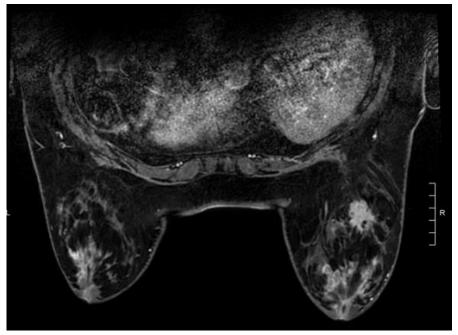
- H&P
- Imaging:
 - Dx bilateral mammogram, U/S
 - Consider breast MRI
 - If T3N1 or any N2: CT CAP, bone scan or NaF PET, or FDG-PET
 - Plain films for any symptomatic bones or abnormal areas on bone scan
 - If neuro sx: MR Brain
- Biopsy: core needle biopsy of primary and FNA biopsy of any suspicious nodes. ER/PR/Her2 assessment
- Consider genetic counseling if at risk for hereditary breast cancer
- Labs: CBC, CMP, Pregnancy test if childbearing potential

Considerations for breast MRI

- May be helpful in defining extent of disease before and after neoadjuvant systemic therapy
- May be helpful to find **clinically occult primaries** (cT0 cN+)
 - Paget's disease
 - Invasive lobular carcinoma poorly seen on mammogram, U/S, or physical exam
- May help define extent of disease if **multi-focal** or **multi-centric** disease suspected
- Screening for **simultaneous contralateral breast cancer** in patients with inherited susceptibility or strong family history
- MRI should be performed at high volume center with dedicated breast coil and breast imaging radiologists


Indications for genetic/familial assessment

- Young age at dx:
 - ≤45 yo
 - 46-50 yo but with at last one blood relative with breast/ovarian/pancreatic/prostate cancer, unknown family history, or 2nd personal breast ca.
 - ≤60 yo with triple negative histology
- Family hx:
 - 1 close blood relative with breast ca at age ≤50 yo, or
 - 1 close blood relative with ovarian/pancreatic/prostate (metastatic/intraductal/cribiform/high risk)
 - 2 close blood relatives with breast cancer of any age
- Ashkenazi Jewish ancestry
- Male sex
- Consider if personal hx of multiple primary breast cancers (first between 50-65 yo)


Case: Work-up (cont'd)

• PET CT

- Right breast: multifocal uptake in central breast (1.9 x 1.5 cm, SUVmax 16.8) and outer central breast (SUVmax 4.4)
- Multiple enlarged right axillary and subpectoral lymph nodes, largest 1.9 cm (SUVmax 4.6)
- No distant metastases

- Breast MRI
 - Right breast: multifocal disease spanning spanning approximately 10.9 x 5.9 x 5.3 cm
 - Left breast: large area of regional clumped non-mass enhancement in the central left breast spanning 8.4 x 4.3 x 4.5 cm
 - Right axillary level I, II, and III and subpectoral lymphadenopathy. No left axillary or IMN lymphadenopathy
- Left breast core needle biopsy:
 - Proliferative fibrocystic changes

Case: Neo-adjuvant Treatment

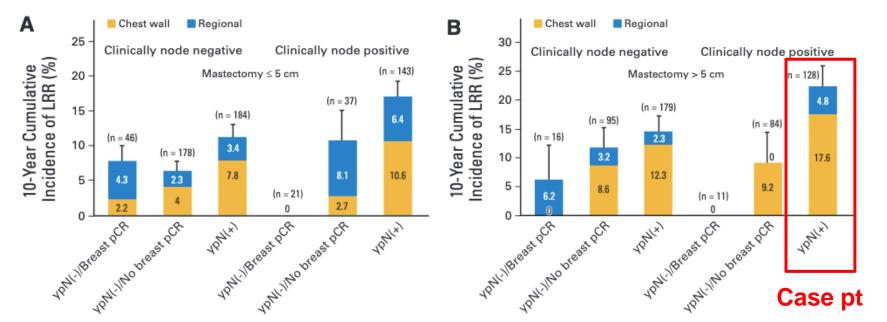
- Upfront staging: cT3N3a
 AJCC Stage IIIC (Anatomic)/IIIB (Prognostic)
- Neoadjuvant chemotherapy (NACT)
 - Adriamycin/Cyclophosphamide (AC) x 4 cycles
 - Taxol x 12 weekly cycles
- Pre-surgical Breast MRI
 - Some treatment response but residual disease remained in breast (9.4 cm span) and right axilla (all 3 levels)

Case: Surgery and Pathology

- Right simple mastectomy and axillary lymph node dissection. No reconstruction
- Pathology:
 - Residual IDC
 - Breast: 5.6 cm, 20% cellularity with treatment effect (RCB-3), Grade 2, LVI+
 - Lymph nodes: 9/15 involved
 - 4 micro-, 5 macrometastases
 - Treatment effect in 3 micro- and 4 macromets
 - ENE-
 - Stage ypT3N2a (Stage IIIB, AJCC 8th Ed. Anatomic)
 - ER+(>95%)PR+(80%)Her2-(IHC 1+), Ki-67 1%
 - Negative surgical margins
- Started adjuvant letrozole

When to consider PMRT

ASCO/ASTRO/SSO guidelines (Recht JCO 2001 and 2016)


Node positive (Upfront or after NACT)

- T1-2N1: consider if age < 40 and no co-morbidities or conditions increasing risk of RT toxicity
 - Small absolute LRR benefit, but low (<10%) even w/o PMRT (Tendulkar IJROBP 2012, Zeidan IJROBP 2018)
- PMRT controversial in upfront cN1 with pathologic nodal complete response (ypN0) after NACT
 - Under active investigation in NSABP B-51
- T3/T4 (T3N0 controversial)
- Additional considerations (albeit lacking strong data support):
 - Positive margins
 - Extranodal extension

What's the estimated recurrence risk without PMRT?

Combined analysis of NSABP B-18 and B-27 (Mamounas JCO 2012)

- Factors associated with increased LRR
 - Upfront clinical node positive
 - Tumor size
 - Poorer response to NACT

Pt recurrence risk predominantly at chest wall (17.6%) vs regional nodes (4.8%) at 10 years

Rationale for PMRT

- Improves LRF, OS in pN+ pts (3 RCTs)
 - British Columbia (Ragaz JNCI 2005)
 - Danish studies
 - 82b Pre-menopausal (Overgaard NEJM 1997)
 - 82c Post-menopausal (Overgaard Lancet 1999)
- Improves 20-yr breast cancer-mortality in pN+ subsets (1-3 and ≥4 LN+), but not pN0
 - EBCTCG Meta-analysis (EBCTCG Lancet 2014)

Rationale for PMRT

Summary of randomized control PMRT trials:

							10 yr outcomes		20 yr outcomes	
Trial		Years	Ν	Patient characteristics	Arms	RT	LRF	OS	LRF	BCM/OS
als	British Columbia	1979-86	318	Clinical stage I/II, pN+, pre-menopausal,	Observation	CW + Axilla + SCV + IMN			26%	37% (OS)
	(Ragaz JNCI 2005)			mastectomy + ALND (med. 11 nodes) -> CMF	PMRT	37.5 Gy/16 fx			10%	47%
						5-field (2 tang. AP SCV, PAB, IM)			p=0.002	p=0.03
	Danish 82b	1982-89	1708	Path stage II/III, <u>pre</u> -menopausal,	Observation PMRT	CW + Axilla + SCV + IMN 50 Gy in 25 fx (or 48 Gy/22 fx)	23%	45%		
	(Overgaard NEJM 1997)			mastectomy + ALND (med. 7 nodes) -> CMF			9%	54%		
Primary							p<0.001	p<0.001		
Pr	Danish 82c	1982-90	1375	Path stage II/III, post-menopausal,			35%	36%		
	(Overgaard Lancet 1999)			mastectomy + ALND (med. 7 nodes) -> Tam		SCV/axilla, PAB if large separation	8%	45%		
							p<0.001	р=0.03		
		1964-86	700	pN0			1.6%			28.8% (BCM)
							3.0%			26.6%
							p>0.1			p>0.1
			∩ (r			CW + Axilla and/or SCV + IMN Various dose/fractionations	20.3%			50.2% (BCM)
							3.8%			42.3%
							<i>p<0.00001</i>			p=0.01
							32.1%			80.0% (BCM)
							13.0%			70.7%
					<i>p<0.00001</i>			p=0.04		

ALND, axillary lymph node dissection; CMF, cyclophosphamide/methotrexate/5-FU; Tam, tamoxifen; CW, chest wall; SCV, supraclavicular fossa; IMN, internal mammary nodes; EBCTCG, Early Breast Cancer Trialists Cooperative Group; PAB, Posterior-anterior beam; BCM, Breast cancer mortality

PMRT in intermediate risk pts under investigation

- MRC/EORTC SUPREMO trial (awaiting survival data)
 - 1688 patients (2008-2013)
 - Eligibility: pT1-2N1, pT3N0, or pT2N0 with Gr3/LVI
 - Arms: Mastectomy and axillary sampling + neoadjuvant or adjuvant chemotherapy with:
 - No PMRT
 - PMRT (chest wall, SCV/IMN optional, no axilla)
 - 50 Gy in 25 fractions (or 45 Gy/20 fx, 42.56 Gy/16 fx or 40 Gy/15 fx), no boost
 - 2-year QOL outcomes (Velikova *Lancet Oncol* 2018)
 - Mildly increased chest wall symptom score with PMRT at up to 2 years (14.1 vs 11.6) with improvement over years 1 to 2

PMRT with regional nodal irradiation (RNI)

- Supraclavicular (SCV) and internal mammary nodal (IMN) fields included in British Columbia and Danish RCTs
- **SCV**: Small (1.9%) breast-cancer mortality benefit in EORTC 22922 when combined with IMN RT. No survival benefit
 - Include if ≥4 LN+ or inflammatory breast cancer, recommended for 1-3 LN+
- IMN: Small (3.9%) absolute overall survival benefit in DBCG-IMN study, but non-significant in French, though study likely underpowered

Greatest benefit if ≥4 LN+ or central/medial tumor

PMRT with regional nodal irradiation (RNI)

PMRT patients in 3 prospective randomized or naturally allocated RNI trials:

							10 yr outcomes	
	Trial	Years	Ν	Patient characteristics	Arms	RT	BCM	OS
	French	1991-1997	1334	pN+ or central/medial tumor	RT CW + SCV + AxI-II (pN+)	50 Gy equivalent		59.3%
	(Hennequin IJROBP 2013)			100% mastectomy + ALND	RT CW + SCV + AxI-II (pN+) + IMN (first 5	IMN: 45 Gy/18 fx,		62.6%
					intercostals)	mixed phot/e-		p=0.8
IMN	DBCG-IMN	2003-2007	3089	pN+	Left: RT Breast/CW + AxII-III + SCV	48 Gy/24 fx	23.4% (8-yr)	72.2% (8-yr)
	(Thorsen JCO 2016)			T1-2 (93%)	Right: RT Breast/CW + AxII-III + SCV + IMN	IMN: ant. e- or	20.9%	75.9%
				mastectomy (66%)/BCS (34%) + ALND	(first 4 intercostals)	tangent photons	p=0.03	p=0.005
SCV	EORTC 22922	1996-2004	4004	Stage I-III	RT Breast/CW (73% of mast. in both arms)	50 Gy/25 fx	14.4%	80.7%
+ IMN	(Poortmans NEJM 2015)			pN+ (56%) or central/med. tumor pN0 (44%)	RT Breast/CW + SCV + IMN (first 3-5		12.5%	82.3%
				BCS (76%)/mastectomy (24%) + ALND	intercostals)		p=0.0055	p=0.36

ALND, axillary lymph node dissection; BCS, breast conserving surgery; CW, chest wall; NS, not significant (p>0.05); SS, statistically significant (p<0.05)

Case: RT Simulation

- Supine with arms up on 15 degree breast board
 - Head turned away from treatment side to open up neck
- Wires
 - Surgical: Incision scar and drain sites
 - Boundaries
 - Superior: Clavicular head
 - Inferior: 2cm below inframammary fold (contralateral intact breast may serve as guide)
 - Medial: Midline
 - Lateral: Mid-axillary line
- Bolus
 - Material: <u>Superflab</u>
 - Other: custom Aquaplast cast, or wax
 - 3 mm thickness
 - Up to 1 cm depending if higher energy used

Mastectomy Scar: To boost or not to boost

- No prospective data for mastectomy scar boost not standard of care
 - ASCO guidelines cite insufficient data for recommendation (Recht JCO 2001, 2016)
- In practice, usage may be considered in the setting of higher local recurrence risk
 - Close/positive margins
 - Poor in-breast response to neoadjuvant therapy
 - Inflammatory breast cancer
- Use in contemporary clinical trials:
 - Alliance 011202 (<u>Mandated</u>):
 - 10-14 Gy in 2 Gy fractions with electrons (recommended) or photons
 - NSABP B51 (<u>Permissible if positive or close <2mm margins</u>):
 - 12-14 Gy in 2 Gy fractions

To bolus or not to bolus

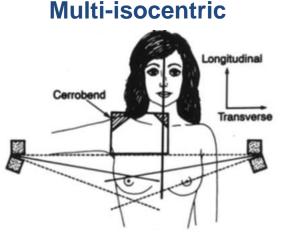
• Usage is variable by geography

- Higher in North America (82%) and Australia (65%) than Europe (31%) (Vu Clin Oncol (R Coll Radiol) 2007)
- No randomized prospective data for its use
 - ASCO guidelines cite insufficient data for recommendation (Recht JCO 2001, 2016)
- Large Canadian retrospective study (n=1887) showed no difference local or locoregional control with omission of bolus (Nichol *IJROBP* 2021)
 - Caveat for pt. imbalance/selection bias: omission of bolus in recon. pts (49%) vs non-recon (4%)

Dose fractionation

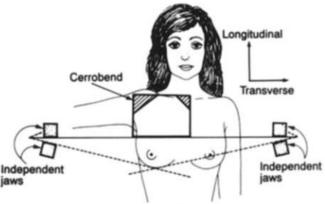
- 50-50.4 Gy in 1.8-2 Gy daily fractions is standard of care
- Moderate hypofractionation (HF)
 - If no breast reconstruction, HF may be used off-trial

Moderate hypofractionation (HF)


- 43.5 Gy in 15 fx (2.9 Gy/fx) Chinese randomized control trial (Wang Lancet Oncol 2019)
 - 820 pts who underwent mastectomy without reconstruction, pN2 or pT3-4
 - Arms: 50 Gy/25 fx (SF) vs 43.5 Gy in 15 fx (HF)
 - RT: Note that electron CW fields were used
 - Outcomes (med f/u 58.5 mo): LRR non-inferior at 5-yr (8.3% HF vs 8.1% SF)
 - Toxicity: Similar acute and late toxicity, Less Gr3 acute skin toxicity with HF (3% vs 8%)
- Extrapolation of efficacy from UK START moderate hypofractionation trials
 - Mostly intact breast but 15% (START A)/8% (START B) of patients underwent mastectomy without immediate reconstruction (Haviland Lancet Oncol 2013)
- Safety and efficacy of hypofractionated PMRT (42.56 Gy in 16 fx) with breast reconstruction currently tested in two US randomized clinical trials
 - FABREC (<u>NCT03422003</u>)
 - Alliance A221505 / RT CHARM (<u>NCT03414970</u>)

Radiation fields

- 3-field technique
 - Tangential fields (x2)
 - Include chest wall, axilla (levels I-III), \pm IMN (if clinically indicated and lung/heart dose constraints achievable).
 - SCV field
- IMN
 - Partially wide tangents (if lung dose constraints can be met)
 - Matching electron field is an alternative
- Mastectomy scar/drain sites
 - Cover in entirety with tangential fields (preferred) or separate electron field if necessary due to scar extension outside of tangent fields

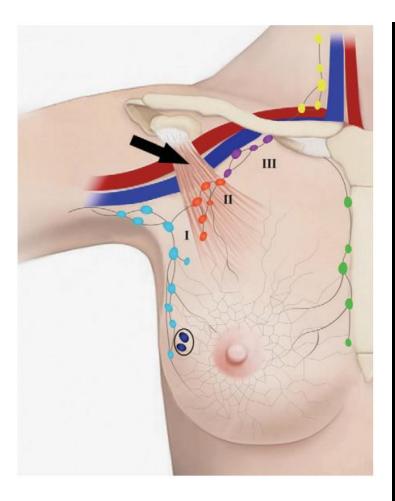

3D planning for PMRT with RNI

- 3-field most typical (2 tangent fields, 1 SCV field)
- Mono-isocentric technique (Klein *IJROBP* 1994)
 - Half-beam block tangent fields
 - Sup-inf extent of chest wall/breast must fit in half-field
 - To match SCV field, tangent field collimators cannot be rotated

- Couch kicks: <u>Required</u>
 - Kick feet away from gantry

Mono-isocentric

Couch kicks: <u>None</u>


Target delineation

Targets

- Chest wall
- Axilla (Levels I-III)
- Supraclavicular fossa
- Internal mammary nodes
- Wired scars

- Organs at risk
 - Thyroid
 - Ipsilateral brachial plexus
 - Contralateral breast
 - Esophagus
 - Heart
 - Lungs
 - Spinal canal
 - If L-sided
 - Left ventricle and left anterior descending artery
 - Stomach
 - If R-sided
 - Liver

Lymph node stations made simple

Axillary levels – Relative to **pec. minor**:

- Level I: lateral
- Level II: post./ant. (contour first!)
- Level III: medial
- Start just below subclavian vessels and go down to 4/5th ribs (Lv I) or obliteration of fat space (Lv II/III)

Supraclav – Bottom of cricoid to bottom of clavicular head

IMN – Along internal mammary vessels from top of 1st rib to top of 4th rib (~3 intercostal spaces)

For detailed boundaries, see contouring atlases (next slide)

Chang Radiology 2020

Contouring consensus guidelines/atlases

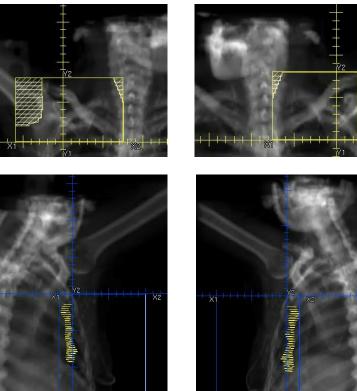
- **RTOG** (<u>www.nrgoncology.org/ciro-breast</u>)
- ESTRO (Offersen Radiother Oncol 2015)
- RadComp (<u>www.nrgoncology.org/About-</u> <u>Us/Center-for-Innovation-in-Radiation-</u> <u>Oncology/Breast/RADCOMP-Breast-Atlas</u>)

Dose goals

Listed are ideal dose guidelines, in parentheses are acceptable limits

• Dose homogeneity:

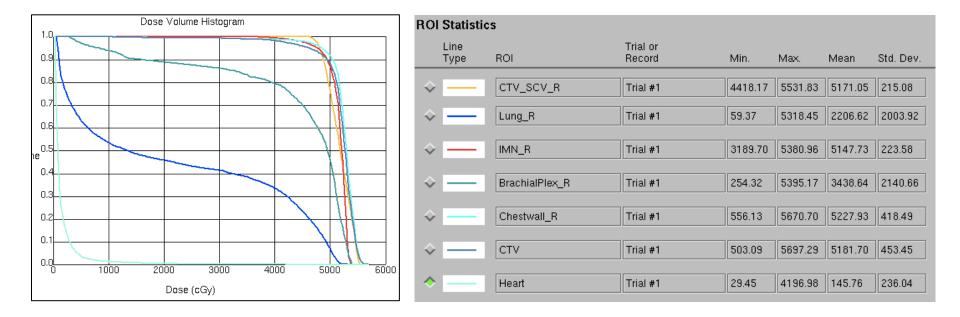
- Chestwall
 - Dmax < 115% (120%) Rx dose
 - V105% Rx dose < 25% (50%)
- Overall plan
 - Dmax < 130% (140%) Rx dose
 - V10cc < 125% (130%) Rx dose
- Target coverage:
 - Chestwall: D95% Rx dose > 95% (90%)
 - Axilla and SCV: D95% Rx dose > 95% (D90% Rx dose > 90%)
 - IMN: D95% Rx dose > 90% (D90% Rx dose > 80%)
- OARs:
 - Lung (ipsilateral): V20Gy < 30% (38%), V10Gy < 50% (60%)</p>
 - Heart: Dmean < 4Gy (5Gy)


Case: RT planning – Trial #1

- 50 Gy in 25 fractions
- Mono-isocentric technique used
 - 2x half-beam blocked tangents (6/10 MV photons)
 - LAO SCV field (10 MV)
 - PA SCV field (15 MV) 15% of SCV MUs to reduce SCV hotspot
- Given high residual nodal positivity, prioritized nodal <u>coverage</u> including (SCV and IMN) while allowing for higher lung dose
 - IMN V95% > 90%
 - Lung V20Gy < 38% (acceptable limit)

LAO SCV

R Lat

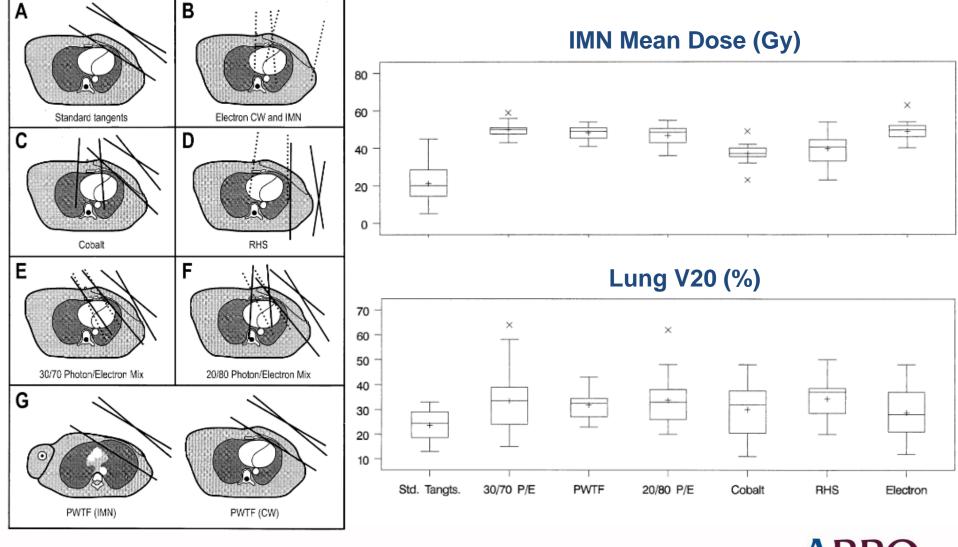


ASSOCIATION OF RESIDENTS IN RADIATION ONCOLOGY

R Med

MN RO

Case: Dose volume hist. – Trial #1

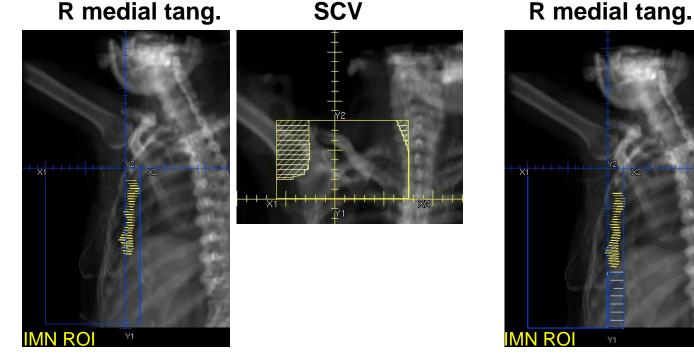


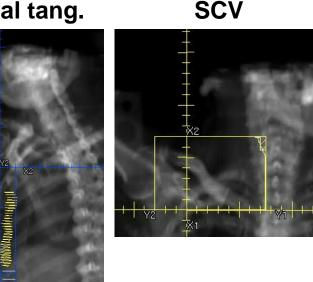
 Target coverage is good, but Lung V20 is too high (46%)

Ways to decrease lung dose while maintaining adequate target (esp. IMN) coverage

- <u>Move isocenter</u> superiorly
 - Decreases apical lung dose from SCV field
- <u>Block lung</u> in tangent fields inferiorly
 - In order to match SCV field, collimator rotation of tangent fields is not possible. Thus, as the isocenter is moved superiorly, more anterior lung may enter tangent fields.
- May also consider trial of using <u>steeper tangents</u> and covering IMNs with <u>separate electron field</u>
- Protons, IMRT/VMAT
- Deep inspiration breath-hold

Alternative beam configurations on IMN coverage and Lung V20

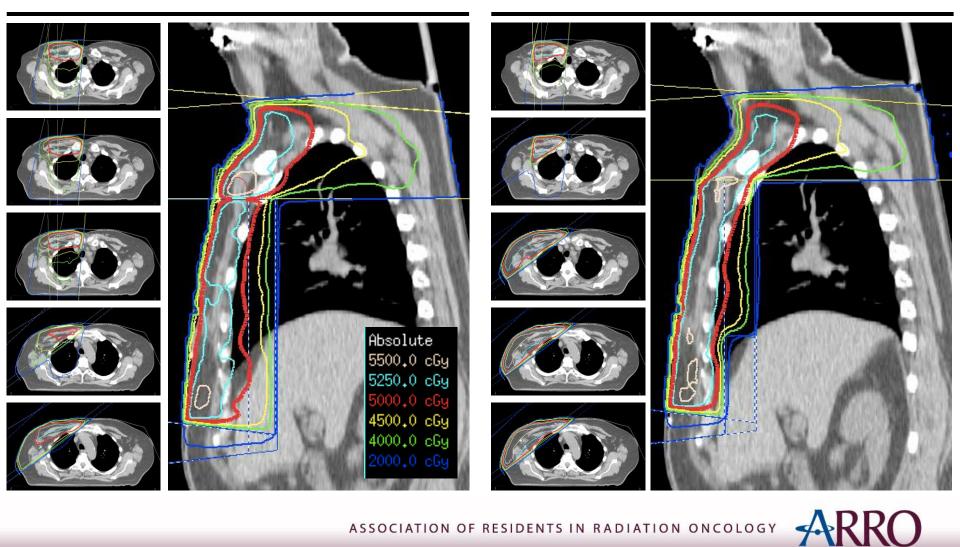


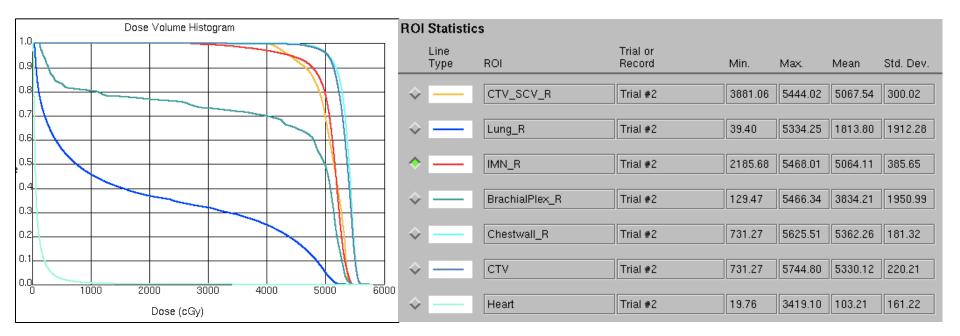

Pierce IJROBP 2002

Case: RT planning – Trial #2

TRIAL #1

TRIAL #2


- Changes made in Trial #2
 - Raise isocenter 1.5 cm superiorly
 - Added inferior lung blocks using MLC


Case: Dose distribution comparison

TRIAL #1

TRIAL #2

Case: Dose volume hist. – Trial #2

 Lung V20 down to 36.6% (from 46%), with excellent V95% coverage of IMN (90.5%)

Case: Radiotherapy course

- Prior to RT start, pt developed 2 open wounds just superior to her mastectomy scar.
 - These were slow to heal, ultimately requiring delay of RT start for 5 weeks to allow for full closure.
- Pt had a significant personal event at the completion of RT. Due to the delay in RT start, her course was moderately hypofractionated to accommodate this.
 - Trial #2 selected, with dose fractionation changed to
 43.5 Gy in 15 fx (from Wang Lancet Oncol 2019)
- Pt had started on letrozole prior to RT and continued it during RT
- Pt completed her RT course without delays or unexpected acute side effects.

What if this patient had desired breast reconstruction?

- **Options** for breast reconstruction
 - <u>Autologous</u> (TRAM flap, DIEP flap, etc.) vs <u>implant-based</u> (pre- or subpectoral)
 - <u>Immediate</u> (implant at time of mastectomy) vs <u>delayed</u> (tissue expanders at time of mastectomy -> expander-implant exchange at 2nd surgery)
 - Mastectomy may be skin +/- nipple sparing
- **Timing** relative to PMRT for implant based reconstruction:
 - If delayed reconstruction, would typically perform PMRT after tissue expanders (TE) are at maximum desired size
 - No difference in complication rates if PMRT is done after TE or with final implants (Santosa *Plast Reconstr Surg* 2016)
 - Consider delaying expander implant exchange for 6 months to reduce risk of implant failure
 - Small single institution series (n=88). Implant loss if exchanged < 6 mo (22.4%) vs >6 mo (7.7%). (Peled *Plast Reconstr Surg* 2012)

What if this patient had desired breast reconstruction?

- Complications of reconstruction with PMRT
 - After immediate implant-based recon.: <u>capsular contracture</u> ~30% and <u>implant loss</u> ~10% (Pu *Medicine (Baltimore)* 2018, meta-analysis)
 - Lower relative risk of complications after 2 years with PMRT for autologous (25.6%) vs implant-based reconstructions (38.9%) (Jagsi JNCI 2018)
 - Other complications include seroma, hematoma, wound dehiscence, implant extrusion
- Radiation considerations with breast reconstruction
 - Conventional fractionation is standard.
 - Moderate hypofractionation is actively studied on clinical trials (FABREC and RT CHARM)
 - Sub-pectoral implants may be better suited for electron/photon matched plans than pre-pectoral implants, which may result in unacceptable cold spots in the chest wall (see image on right, Mitchell PRO 2018)

References

- Recht, A. *et al.* Postmastectomy radiotherapy: an american society of clinical oncology, american society for radiation oncology, and society of surgical oncology focused guideline update. *J. Clin. Oncol.* **34**, 4431–4442 (2016).
- Recht, A. *et al.* Postmastectomy radiotherapy: clinical practice guidelines of the American Society of Clinical Oncology. *J. Clin. Oncol.* **19**, 1539–1569 (2001).
- Mamounas, E. P. *et al.* Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. *J. Clin. Oncol.* **30**, 3960–3966 (2012).
- Ragaz, J. *et al.* Locoregional radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20-year results of the British Columbia randomized trial. *J. Natl. Cancer Inst.* **97**, 116–126 (2005).
- Overgaard, M. *et al.* Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. *N. Engl. J. Med.* **337**, 949–955 (1997).
- Overgaard, M. *et al.* Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. *Lancet* **353**, 1641–1648 (1999).
- Thorsen, L. B. J. *et al.* DBCG-IMN: A Population-Based Cohort Study on the Effect of Internal Mammary Node Irradiation in Early Node-Positive Breast Cancer. *J. Clin. Oncol.* **34**, 314–320 (2016).
- EBCTCG (Early Breast Cancer Trialists' Collaborative Group) *et al.* Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. *Lancet* **383**, 2127–2135 (2014).
- Poortmans, P. M. *et al.* Internal mammary and medial supraclavicular irradiation in breast cancer. *N. Engl. J. Med.* **373**, 317–327 (2015).
- Whelan, T. J. *et al.* Regional Nodal Irradiation in Early-Stage Breast Cancer. *N. Engl. J. Med.* **373**, 307–316 (2015).
- Velikova, G. *et al.* Quality of life after postmastectomy radiotherapy in patients with intermediate-risk breast cancer (SUPREMO): 2-year follow-up results of a randomised controlled trial. *Lancet Oncol.* **19**, 1516–1529 (2018).

References (continued)

- Zeidan, Y. H. *et al.* Postmastectomy Radiation Therapy in Women with T1-T2 Tumors and 1 to 3 Positive Lymph Nodes: Analysis of the Breast International Group 02-98 Trial. *Int. J. Radiat. Oncol. Biol. Phys.* **101**, 316–324 (2018).
- Tendulkar, R. D. *et al.* Impact of postmastectomy radiation on locoregional recurrence in breast cancer patients with 1-3 positive lymph nodes treated with modern systemic therapy. *Int. J. Radiat. Oncol. Biol. Phys.* 83, e577-81 (2012).
- Wang, S.-L. *et al.* Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: a randomised, non-inferiority, open-label, phase 3 trial. *Lancet Oncol.* **20**, 352–360 (2019).
- Haviland, J. S. *et al.* The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. *Lancet Oncol.* **14**, 1086–1094 (2013).
- Klein, E. E., Taylor, M., Michaletz-Lorenz, M., Zoeller, D. & Umfleet, W. A mono isocentric technique for breast and regional nodal therapy using dual asymmetric jaws. *Int. J. Radiat. Oncol. Biol. Phys.* **28**, 753–760 (1994).
- Offersen, B. V. *et al.* ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer, version 1.1. *Radiother. Oncol.* **118**, 205–208 (2016).
- Pierce, L. J. *et al.* Postmastectomy radiotherapy of the chest wall: dosimetric comparison of common techniques. *Int. J. Radiat. Oncol. Biol. Phys.* **52**, 1220–1230 (2002).
- Chang, J. M., Leung, J. W. T., Moy, L., Ha, S. M. & Moon, W. K. Axillary nodal evaluation in breast cancer: state of the art. *Radiology* **295**, 500–515 (2020).
- Vu, T. T. T., Pignol, J. P., Rakovitch, E., Spayne, J. & Paszat, L. Variability in radiation oncologists' opinion on the indication of a bolus in post-mastectomy radiotherapy: an international survey. *Clin. Oncol. (R. Coll. Radiol)* **19**, 115–119 (2007).
- Nichol, A. *et al.* The Effect of Bolus on Local Control for Patients Treated with Mastectomy and Radiotherapy. *Int. J. Radiat. Oncol. Biol. Phys.* (2021). doi:10.1016/j.ijrobp.2021.01.019

References (continued)

- Pu, Y., Mao, T.-C., Zhang, Y.-M., Wang, S.-L. & Fan, D.-L. The role of postmastectomy radiation therapy in patients with immediate prosthetic breast reconstruction: A meta-analysis. *Medicine* **97**, e9548 (2018).
- Jagsi, R. *et al.* Impact of Radiotherapy on Complications and Patient-Reported Outcomes After Breast Reconstruction. *J. Natl. Cancer Inst.* **110**, (2018).
- Mitchell, M. P., Wagner, J. & Butterworth, J. Subcutaneous implant-based breast reconstruction, a modern challenge in postmastectomy radiation planning. *Pract Radiat Oncol* **8**, 153–156 (2018).

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com