Meningeal Hemangiopericytoma

Amishi Bajaj, MD

Northwestern University, Feinberg School of Medicine

Faculty: Sean Sachdev, MD

Case Presentation

- HPI: 19-year-old male noted "the worst headache of his life" associated with left visual field abnormalities
- PMHx: None
- PSHx: None
- FHx: No first-degree relatives with cancer
- Soc Hx: College student, non-smoker
- **ROS:** No other pertinent symptoms

Pre-Treatment Imaging

 MRI brain with contrast showed right parietooccipital dural-based lesion that was enhancing and solid/cystic in nature with significant peritumoral edema

MRI brain at diagnosis: axial T1 post-contrast

Clinical Course

- Patient underwent craniotomy, and maximal safe resection of mass was attempted
- However, surgery was prematurely aborted due to significant intra-operative bleeding and edema requiring IV mannitol
- Pathology from surgery demonstrated
 <u>WHO grade II hemangiopericytoma</u>

Hemangiopericytoma (HPC)

- HPC: rare benign neoplasm derived from pericytes lining the endothelium of smaller vessels¹⁻²
 - 1% of intracranial tumors
 - 2.5% of meningeal tumors
- Following WHO 2016 classification, now considered type of solitary fibrous tumor (SFT)³
 - SFT and meningeal HPC share a defining molecular characteristic: NAB2/STAT6 gene fusion⁴
- Meningeal HPC: dural-based, intracranial SFT

HPC: Classic & Unique Features

- Imaging:
 - "Corkscrew" vascularization, extensive associated edema, and irregular/lobulated borders⁵
- <u>Clinical features:</u>
 - Prone to bleeding
 - Illustrated by patient in our case intra-op bleeding
 - Predilection for:
 - Local recurrence, even for lower grade (I-II) tumors⁶
 - Distant metastases (DM rate as high as 65% at 15 years)²
 - Sites: lungs, bone, liver, subcutaneous tissue, pleura⁷
 - Late development of DMs (mean time to DM: 7.5 years)⁷

HPC: Clinical Features and DDx⁸

Feature	Meningeal HPC	Meningioma		
Location	Supratentorial > infratentorial	Supratentorial > infratentorial		
Incidence	<1% of intracranial tumors	15-20% of intracranial tumors		
Age	4 th decade of life	5 th decade of life		
Sex	Male > female	Female > male		
Recurrence Risk	Very high/expected	Lower risk		
Metastatic potential outside CNS?	Very high	Minimal		
Enhancement on imaging?	Yes	Homogeneous		
Calcification	Rarely	Commonly		
Effect on adjacent bone	Bony erosion	Hyperostosis		
Primary treatment	Surgery +/- adjuvant RT	Surgery +/- adjuvant RT		
Bleeding risk?	High	Rare except for skull base		

HPC: WHO Grading⁹

WHO Grade (2016)	Description	Prior WHO (2007) Name
Ι	Highly collagenous, relatively low cellularity, spindle cell lesion	Solitary fibrous tumor
II	More cellular, less collagenous tumor with plump cells and "staghorn" vasculature	Hemangiopericytoma
III	Five or more mitoses per 10 high-power fields	Anaplastic hemangiopericytoma

• By older WHO grading, grades II-III were classically regarded as HPCs (and stage I as SFT)

Back to our patient...

- Following initial attempt at surgery, a second effort was made at completing gross total resection (GTR). However, this was complicated by cerebral edema.
- The patient was subsequently seen for initial consultation in radiation oncology clinic in April 2012 following full staging work-up with CT C/A/P
- Recommendation was made for adjuvant radiotherapy with conventional fractionation

Target Volumes (Conventional Fractionation)

- Gross tumor volume (GTV)
 - Tumor bed with any residual nodular enhancement noted on post-op T1 post-contrast MRI
- Clinical target volume (CTV)
 - GTV + areas at risk for microscopic spread. Often incorporates a 1-2 cm margin (e.g. dura) while respecting anatomic boundaries.
- Planning target volume (PTV)
 - 3-5 mm depending on institutional practice, IGRT

Treatment

- May 2012 July 2012: Patient received adjuvant radiotherapy with 50.4 Gy in 28 fractions with IMRT to the post-op tumor bed and gross residual disease
- Boost to gross disease: 10.8 Gy in 6 fractions
- Cumulative dose:
 61.2 Gy in 34 fractions

Treatment Paradigm for HPC: GTR

- For all SFTs, 1st step: upfront surgical resection¹⁰
- First step for all HPC cases: Gross total resection (figure: Simpson grading)¹¹
 - Based on high vascularity, even with pre-op embolization, estimated GTR rate about 33-66%¹²
 - Extent of resection associated with recurrence-free survival¹³

SIMPSON GRADE	DEGREE OF RESECTION		
I	Macroscopic complete removal with excision of dural attachment & abnormal bone		
II	Macroscopically complete with endothermy coagulation of dural attachment		
II	Macroscopically complete without resection or coagulation of dural attachment or of its extradural extensions		
IV	Partial removal leaving tumor in situ		
V	Simple decompression ± biopsy		

Treatment Paradigm for HPC: Adjuvant RT

- No existing randomized data; limited retrospective/population-based analyses only
- However, adjuvant radiotherapy following GTR has a well-established role due to notoriously high risk for locoregional recurrence
- Adjuvant RT improves:
 - Local control
 - Study by Rutkowski et al. (n=35) found that adjuvant RT increased time to recurrence from 3.9 years to 6.6 years, independent of extent of resection¹⁴
 - Overall survival (see Table on next slide*)¹²⁻²⁰

*Table extrapolated from Bernard V, Ghia AJ. "Hemangiopericytoma." In: Chang, E. L. et al. (eds) Adult CNS Radiation Oncology 1st edn (Springer, 2018), pp 307-315.

Study Year	# of Patients	Median FU (mo, range)	Median tumor volume (cm ³)	Median marginal dose or mean dose (Gy, range)	New lesions (% of patients)	Extra- cranial metastasis (%)	Median OS	Summary of Study Findings
Rutkowski et al., 2010	277	78	5.36	N/A	43	27	156	OS benefit demonstrated with gross total resection (GTR)
Rutkowski et al., 2012	35	2-408	4.4	N/A	46	20	194.4	Trend towards statistical significance for improved recurrence-free survival with post-op radiation
Ghia et al., 2013	88	N/A	N/A	N/A	N/A	N/A	111	Both GTR and post-op radiation associated with improved OS
Ghia et al., 2013	63	N/A	N/A	60 (35-66.4)	51	N/A	154	Post-op radiation associated with better local control, especially at doses > 60 Gy
Sonabend et al., 2014	227	34	5	N/A	N/A	N/A	N/A	Statistically significant improvement in OS with GTR and radiation vs GTR alone
Chen et al, 2015	38	61 (15-133)	4.6	N/A	66	13	N/A	GTR with adjuvant radiation associated with improved OS and recurrence-free survival
Cohen- Inbar et al., 2016	90	59 (6-183)	4.9	14 (12-16)	55	24.4	N/A	Margin dose >16 Gy associated with better local control
Kim et al., 2017	18	71.8 (3.3-153.3)	1.2	20 (13-30)	80	38.9	225.7	GK SRS may be used repeatedly for intracranial recurrence or progression

Adjuvant RT: Modality & Dose

- Adjuvant RT following maximal safe resection may be administered using IMRT or SRS (if candidate)
- <u>Dose escalation is important</u>!
 - For IMRT: Improved local control with >60 Gy versus 50 Gy^{13,16}
 - For SRS: While recommendations for marginal dose range from 14-22 Gy, ≥16-17 Gy advised¹⁹
 - Kim et al. (2010, n=17) found improved local control with marginal doses ≥17 Gy without significantly worse radionecrosis or peritumoral edema²¹
 - Regardless of modality: push dose when feasible

What about protons?!

- Proton therapy is an emerging area of study
- Ongoing phase II feasibility study by PTCOG (NCT01117844): Proton Radiation for Meningiomas and Hemangiopericytomas²²
 - Eligibility: Age 18 or older with WHO grade I-III meningiomas and hemangiopericytomas
 - "Standard dose" (non-dose escalation study)
 - Primary objectives: feasibility and safety
 - Secondary objectives: side effects, QOL, late complications, dose distribution/DVH, and local control/survival outcomes

Our Patient: Toxicity

 Our patient completed his prescribed course of treatment and tolerated it well overall with mild fatigue and alopecia

Anticipated side effects (conventional fx):

- Acute: fatigue, dermatitis, alopecia, headache, n/v
- Late: Location-dependent
 - Neurocognitive/audiovisual deficits
 - Hypopituitarism if treating close to sella turcica with doses exceeding 50 Gy

Our Patient: Surveillance

- Completed adjuvant RT in July 2012
- Underwent surveillance (clinical exam/imaging)

Surveillance Recommendations:

- MRI brain with contrast at 3 months and 6 months following completion of RT, then every 6 months
- Patients undergo lifetime surveillance (at least up to 20 years) due to risk of late recurrence
- Based on index of suspicion, consider imaging of common sites of DM (lungs, liver) with CT C/A/P

Treatment Response/Tumor Kinetics

- For SFTs, tumor response following RT reflects the kinetics associated with tumor growth²³
- While HPCs may respond more quickly than other SFTs, tumor response time exhibits a wide range of variability
 - Some intracranial HPCs may take as long as 2 years to demonstrate even a partial response²⁴

Our Patient: Response

- July 2012-May 2020: No evidence of recurrence
- May 2020: Surveillance MRI brain demonstrated radiographic progression of enhancing nodule at the anteromedial aspect of the resection cavity, now measuring about 2 cm in widest diameter.

HPC: Salvage Treatment

- Options:
 - Repeat surgical resection
 - Salvage radiotherapy
- Considerations:
 - Neurologic functioning
 - Extracranial disease status
 - Timing of prior radiotherapy
 - Intracranial tumor volume

HPC: Salvage Treatment

- Most studied treatment option for salvage reirradiation is SRS
- Limited existing data in reirradiation setting — Olson et al. (2010): Repeat SRS (n=13)²⁵
 - Mean Rx dose: 17 Gy; maximum dose: 40.3 Gy
 - Found SRS to be safe and effective for treating new or recurrent HPCs over long follow-up period
 - Kim et al. (2017):²⁰
 - Mean marginal dose 20 Gy (range: 13-30 Gy)
 - Used GK SRS found it may safely be used repeatedly for recurrence

June 21, 2021

Our Patient: Salvage Treatment

- Patient decided against surgery
- Our patient received salvage reirradiation with Gamma Knife (GK) SRS
- 24 Gy prescribed to the 50% isodose line was delivered to the right parietooccipital/parafalcine mass

Our Patient: Treatment Technique

- 33 shots were placed
- Elegant solution:
 - Preferential dose spill into surgical cavity to preserve adjacent normal tissue (delineated in orange)
 - Allowed for ability to push prescription dose to 24 Gy to maximize local control
 - Especially important in salvage setting

Our Patient: Follow-Up

- Most recent followup: March 2021
- Patient doing well without clinical or radiographic evidence of progression
- Most recent MRI brain with contrast shown on the right

Summary

- HPCs are highly vascular and carry significant bleeding risk, making GTR challenging and further increasing importance of adjuvant radiotherapy
- They are likely to recur as well as spread distantly & up to many years following initial therapy
- When feasible, escalating RT dose improves outcomes
- SRS is an excellent salvage option

*Figure extrapolated from: Bajaj A, Saeed H. Solitary fibrous tumors/hemangiopericytoma. Sarcomas and Skin Cancers: A Practical Guide on Radiation Treatment Techniques. Publisher: Springer; Editors: Edward Kim MD, Upendra Parvathaneni MBBS, Meng Welliver, MD. In process.

References

- 1. Dufour H, Metellus P, Fuentes S, et al. Meningeal hemangiopericytoma: a retrospective study of 21 patients with special review of postoperative external radiotherapy. *Neurosurgery*. 2001;48:756–762.
- 2. Guthrie BL, Ebersold MJ, Scheithauer BW, et al. Meningeal hemangiopericytoma: histopathological features, treatment, and long-term follow-up of 44 cases. *Neurosurgery.* 1989;25:514–522.
- 3. Macagno N, Vogels R, Appay R, Colin C, Mokhtari K, French CNSSFTHPCC et al. Grading of meningeal solitary fibrous tumors/hemangiopericytomas: analysis of the prognostic value of the Marseille Grading System in a cohort of 132 patients. Brain Pathol. 2018.
- 4. Schweizer L, Koelsche C, Sahm F, et al. Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol. 2013 May;125(5):651-8.
- 5. Sibtain NA, Butt S, Connor SEJ. Imaging features of central nervous system haemangiopericytomas. *Eur Radiol*. 2007;17(7):1685–1693.
- 6. Mathieu D. Why do hemangiopericytomas have such high recurrence rates? *Expert Review of Anticancer Therapy.* 2016. 16(11): 1095-6.
- 7. Ghose A, Guha G, Kundu R, Tew J, Chaudhary R. CNS Hemangiopericytoma: A Systematic Review of 523 Patients. *American Journal of Clinical Oncology*, 2017; 40(3): 223-7.
- 8. Ladha AM, Guthrie BL, Ewend MG. Youmans. Neurological surgery. In: Winn R, editor. Vol. 2. 6 th ed, Chapter 132. Elsevier, Saunders; 2011. p. 1450-9.
- 9. Ghanchi H, Patchana T, Christian E, Li C, Calayag M. Pediatric sellar solitary fibrous tumor/ hemangiopericytoma: A rare case report and review of the literature. *Surg Neurol Int*, 2020;11:238.
- 10. Cardillo G, Lococo F, Carleo F, Martelli M. Solitary fibrous tumors of the pleura. *Curr Opin Pulm Med* 2012; 18:339.

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com

References

- 11. Przybylowski, C. J., Hendricks, B. K., Frisoli, et al. Simpson grading scale in modern meningioma surgery: Barrow Neurological Institute experience, Journal of Neurosurgery JNS, 2020. Published online ahead of print.
- 12. Sonabend AM, Zacharia BE, Goldstein H, et al. The role for adjuvant radiotherapy in the treatment of hemangiopericytoma: a surveillance, epidemiology, and end results analysis. J Neurosurg. 2014;120(2):300–8
- 13. Bernard V, Ghia AJ. "Hemangiopericytoma." In: Chang, E. L. et al. (eds) *Adult CNS Radiation Oncology* 1st edn (Springer, 2018), pp 307-315.
- 14. Rutkowski MJ, Jian BJ, Bloch O, et al. Intracranial hemangiopericytoma: clinical experience and treatment considerations in a modern series of 40 adult patients. Cancer. 2012;118(6):1628–36.
- 15. Rutkowski MJ, Sughrue ME, Kane AJ, et al. Predictors of mortality following treatment of intracranial hemangiopericytoma. *J Neurosurg*. 2010;113(2):333–9.
- 16. Ghia AJ, Allen PK, Mahajan A, et al. Intracranial hemangiopericytoma and the role of radiation therapy: a population based analysis. Neurosurgery. 2013;72(2):203–9.
- 17. Ghia AJ, Chang EL, Allen PK, et al. Intracranial hemangiopericytoma: patterns of failure and the role of radiation therapy. *Neurosurgery*. 2013;73(4):624–30. discussion 30–1
- 18. Chen LF, Yang Y, Yu XG, et al. Multimodal treatment and management strategies for intracranial hemangiopericytoma. J Clin Neurosci. 2015;22(4):718–25.
- 19. Cohen-Inbar O, Lee CC, Mousavi SH, et al. Stereotactic radiosurgery for intracranial hemangiopericytomas: a multicenter study. J Neurosurg. 2017;126(3):744–54.
- 20. Kim BS, Kong DS, Seol HJ, et al. Gamma knife radiosurgery for residual or recurrent intracranial hemangiopericytomas. *J Clin Neurosci*. 2017;35:35–41

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com

References

- 21. Kim JW, Kim DG, Chung HT, et al. Gamma Knife stereotactic radiosurgery for intracranial hemangiopericytomas. J Neurooncol. 2010;99(1):115–22.
- 22. ClinicalTrials.gov. Proton Radiation for Meningiomas and Hemangiopericytomas (NCT01117844). Accessed at https://clinicaltrials.gov/ct2/show/NCT01117844 on 31 May 2021.
- 23. Saynak M, Veeramachaneni NK, Hubbs JL, Okumuş D, Marks LB. Solitary Fibrous Tumors of Chest: Another Look with the Oncologic Perspective. *Balkan Med J*. 2017;34(3):188–199. doi:10.4274/balkanmedj.2017.0350
- 24. Soyuer S, Chang EL, Selek U, McCutcheon IE, Maor MH. Intracranial meningeal hemangiopericytoma: the role of radiotherapy: report of 29 cases and review of the literature. *Cancer.* 2004; 100: 1491- 1497.
- 25. Olson C, Yen C, Schlesinger D, Sheehan J. Radiosurgery for intracranial hemangiopericytomas: outcomes after initial and repeat Gamma Knife surgery. *J Neurosurg*, 2010; 112(1): 133-9.
- 26. Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, Romano A, Enrici RM. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011 May 15;6:48.
- Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010 Jul 15;77(4):996-1001.

Please provide feedback regarding this case or other ARROcases to arrocase@gmail.com